Dimensional Accuracy of Hydrophilic and Hydrophobic VPS Impression Materials Using Different Impression Techniques - An Invitro Study.

INTRODUCTION The dimensional stability of the impression material could have an influence on the accuracy of the final restoration. Vinyl Polysiloxane Impression materials (VPS) are most frequently used as the impression material in fixed prosthodontics. As VPS is hydrophobic when it is poured with gypsum products, manufacturers added intrinsic surfactants and marketed as hydrophilic VPS. These hydrophilic VPS have shown increased wettability with gypsum slurries. VPS are available in different viscosities ranging from very low to very high for usage under different impression techniques. AIM To compare the dimensional accuracy of hydrophilic VPS and hydrophobic VPS using monophase, one step and two step putty wash impression techniques. MATERIALS AND METHODS To test the dimensional accuracy of the impression materials a stainless steel die was fabricated as prescribed by ADA specification no. 19 for elastomeric impression materials. A total of 60 impressions were made. The materials were divided into two groups, Group1 hydrophilic VPS (Aquasil) and Group 2 hydrophobic VPS (Variotime). These were further divided into three subgroups A, B, C for monophase, one-step and two-step putty wash technique with 10 samples in each subgroup. The dimensional accuracy of the impressions was evaluated after 24 hours using vertical profile projector with lens magnification range of 20X-125X illumination. The study was analyzed through one-way ANOVA, post-hoc Tukey HSD test and unpaired t-test for mean comparison between groups. RESULTS Results showed that the three different impression techniques (monophase, 1-step, 2-step putty wash techniques) did cause significant change in dimensional accuracy between hydrophilic VPS and hydrophobic VPS impression materials. One-way ANOVA disclosed, mean dimensional change and SD for hydrophilic VPS varied between 0.56% and 0.16%, which were low, suggesting hydrophilic VPS was satisfactory with all three impression techniques. However, mean dimensional change and SD for hydrophobic VPS were much higher with monophase, mere increase for 1-step and 2-step, than the standard steel die (p<0.05). Unpaired t-test displayed that hydrophilic VPS judged satisfactory compared to hydrophobic VPS among 1-step and 2-step impression technique. CONCLUSION Within the limitations of this study, it can be concluded that hydrophilic Vinyl polysiloxane was more dimensionally accurate than hydrophobic Vinyl polysiloxane using monophase, one step and two step putty wash impression techniques under moist conditions.