Introduction to Active Origami Structures

Origami, the ancient art of paper folding, has inspired the design and functionality of engineering structures for decades. The underlying principles of origami are very general, it takes two-dimensional components that are easy to manufacture (sheets, plates, etc.) into three-dimensional structures. More recently, researchers have become interested in the use of active materials that convert various forms of energy into mechanical work to produce the desired folding behavior in origami structures. Such structures are termed active origami structures and are capable of folding and/or unfolding without the application of external mechanical loads but rather by the stimulus provided by a non-mechanical field (thermal, chemical, electromagnetic). This is advantageous for many areas including aerospace systems, underwater robotics, and small scale devices. In this chapter, we introduce the basic concepts and applications of origami structures in general and then focus on the description and classification of active origami structures. We finalize this chapter by reviewing existing design and simulation efforts applicable to origami structures for engineering applications.

[1]  Joseph M. Gattas,et al.  Quasi-static impact response of alternative origami-core sandwich panels , 2013 .

[2]  H. Meng,et al.  A review of stimuli-responsive shape memory polymer composites , 2013 .

[3]  Jeong Woo Han,et al.  All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues , 2014 .

[4]  A. Lendlein,et al.  Multifunctional Shape‐Memory Polymers , 2010, Advanced materials.

[5]  Zhong You,et al.  Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: Numerical simulation , 2016 .

[6]  A. Mata,et al.  Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems , 2005, Biomedical microdevices.

[7]  Robert J. Wood,et al.  Self-folding shape memory laminates for automated fabrication , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Evin Gultepe,et al.  Origami Inspired Self-assembly of Patterned and Reconfigurable Particles , 2013, Journal of visualized experiments : JoVE.

[9]  D. Leo Engineering Analysis of Smart Material Systems , 2007 .

[10]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[11]  Ergun Akleman,et al.  Connectivity of Shape Memory Alloy-based Self-Folding Structures , 2014 .

[12]  Darren J. Hartl,et al.  Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet , 2013 .

[13]  Shenguang Ge,et al.  A three-dimensional origami-based immuno-biofuel cell for self-powered, low-cost, and sensitive point-of-care testing. , 2014, Chemical communications.

[14]  S. Saravanan,et al.  Array of Micromachined Components Fabricated Using “Micro-Origami” Method , 2002, 2002 International Microprocesses and Nanotechnology Conference, 2002. Digest of Papers..

[15]  David Eppstein,et al.  Ununfoldable polyhedra with convex faces , 1999, Comput. Geom..

[16]  Dimitris C. Lagoudas,et al.  Folding patterns and shape optimization using SMA-based self-folding laminates , 2014, Smart Structures.

[17]  Yonggang Huang,et al.  Origami MEMS and NEMS , 2016 .

[18]  Jiayao Ma,et al.  The Origami Crash Box , 2011 .

[19]  Xiaoping Zhou,et al.  Origami mechanical metamaterials based on the Miura-derivative fold patterns , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Robert J. Lang,et al.  A computational algorithm for origami design , 1996, SCG '96.

[21]  Mehdi Farshad,et al.  Magnetoactive elastomer composites , 2004 .

[22]  Donghwa Jeong,et al.  OrigamiBot-I: A thread-actuated origami robot for manipulation and locomotion , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Roel Vertegaal,et al.  PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays , 2011, CHI.

[24]  A. M. Shkel,et al.  Miniature origami-like folded MEMS TIMU , 2015, 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[25]  Valeriy Luchnikov,et al.  Self-rolled polymer tubes: novel tools for microfluidics, microbiology, and drug-delivery systems. , 2011, Macromolecular rapid communications.

[26]  Zhihong Nie,et al.  Enzyme-Triggered Folding of Hydrogels: Toward a Mimic of the Venus Flytrap. , 2016, ACS applied materials & interfaces.

[27]  L. Ionov,et al.  Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes , 2010 .

[28]  Valeriy Luchnikov,et al.  Formation of self-rolled polymer microtubes studied by combinatorial approach , 2008 .

[29]  Jie Qi,et al.  Animating paper using shape memory alloys , 2012, CHI.

[30]  Alastair Johnson,et al.  Sandwich structures with textile-reinforced composite foldcores under impact loads , 2010 .

[31]  Ashley P. Thrall,et al.  Honeycomb core sandwich panels for origami-inspired deployable shelters: Multi-objective optimization for minimum weight and maximum energy efficiency , 2014 .

[32]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[33]  Richard L. Baron,et al.  Twenty-meter space telescope based on diffractive Fresnel lens , 2004, SPIE Optics + Photonics.

[34]  Jin-seong Park,et al.  Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors , 2009 .

[35]  Daniel M. Aukes,et al.  Self-folding origami: shape memory composites activated by uniform heating , 2014 .

[36]  Ashley P. Thrall,et al.  Bascule shelters: A novel erection strategy for origami-inspired deployable structures , 2014 .

[37]  Makoto Ishida,et al.  An origami-inspired ultrastretchable bioprobe film device , 2016, 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).

[38]  Paris von Lockette,et al.  Fabrication and Performance of Magneto-Active Elastomer Composite Structures , 2014 .

[39]  Ichiro Hagiwara,et al.  Application of Conformal Maps to Origami-Based Structures: New Method to Design Deployable Circular Membranes , 2013 .

[40]  Dominique Tan,et al.  Projectagami: A Foldable Mobile Device with Shape Interactive Applications , 2015, CHI Extended Abstracts.

[41]  Yi Min Xie,et al.  Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption , 2018 .

[42]  D. Sujan,et al.  Origami Theory and Its Applications: A Literature Review , 2013 .

[43]  Darren J. Hartl,et al.  Control of a Shape Memory Alloy Based Self-Folding Sheet , 2014 .

[44]  Manos M. Tentzeris,et al.  A novel reconfigurable origami spring antenna , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[45]  D. Gracias,et al.  Pick-and-place using chemically actuated microgrippers. , 2008, Journal of the American Chemical Society.

[46]  David Dureisseix,et al.  An Overview of Mechanisms and Patterns with Origami , 2012 .

[47]  Qian Cheng,et al.  Folding paper-based lithium-ion batteries for higher areal energy densities. , 2013, Nano letters.

[48]  Byoungkwon An,et al.  Designing and programming self-folding sheets , 2014, Robotics Auton. Syst..

[49]  Darren J. Hartl,et al.  Reinforcement Learning for Control of a Shape Memory Alloy Based Self-Folding Sheet , 2015 .

[50]  Vijay Kumar,et al.  A Simulator for Origami-Inspired Self-Reconfigurable Robots , 2011 .

[51]  Xiang Zhou,et al.  Design of three-dimensional origami structures based on a vertex approach , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  Paul E. I. Pounds,et al.  Paper Plane: Towards Disposable Low-Cost Folded Cellulose-Substrate UAVs , 2012, ICRA 2012.

[53]  S. Fischer,et al.  Realistic Fe simulation of foldcore sandwich structures , 2015, International Journal of Mechanical and Materials Engineering.

[54]  Brett Michael Cowan Magnetically Induced Actuation and Optimization of the Miura-ori Structure , 2015 .

[55]  Sergio Pellegrino,et al.  Origami Sunshield Concepts for Space Telescopes , 2013 .

[56]  Robert J. Wood,et al.  Self-assembling sensors for printable machines , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[57]  Leonid Ionov,et al.  Hydrogel-based actuators: possibilities and limitations , 2014 .

[58]  Larry L. Howell,et al.  Oriceps: Origami-Inspired Forceps , 2013 .

[59]  Alejandro R. Diaz,et al.  Origami Design by Topology Optimization , 2013 .

[60]  Zion Tsz Ho Tse,et al.  Origami Endoscope Design for MRI-Guided Therapy , 2017 .

[61]  Thomas C. Hull,et al.  A Mathematical Model for Non-Flat Origami , 2002 .

[62]  Ralf Sturm,et al.  Virtual Design Method for Controlled Failure in Foldcore Sandwich Panels , 2015, Applied Composite Materials.

[63]  Mukesh V. Gandhi,et al.  An introduction to smart materials and structures , 1992 .

[64]  R. Wood,et al.  Self-folding miniature elastic electric devices , 2014 .

[65]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[66]  Jiayao Ma,et al.  A Novel Origami Crash Box With Varying Profiles , 2013 .

[67]  Tyler Halbert,et al.  Numerically validated reduced-order model for laminates containing shape memory alloy wire meshes , 2016 .

[68]  Erik D. Demaine,et al.  Recent Results in Computational Origami , 2002 .

[69]  L. Ionov,et al.  Self-folding all-polymer thermoresponsive microcapsules , 2011 .

[70]  Roel Vertegaal,et al.  MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications , 2013, CHI.

[71]  Ergun Akleman,et al.  Design Tools for Patterned Self-Folding Reconfigurable Structures Based on Programmable Active Laminates , 2016 .

[72]  Ivan Poupyrev,et al.  Gummi: a bendable computer , 2004, CHI '04.

[73]  Vladimir Brailovski,et al.  Shape memory alloys : fundamentals, modeling and applications , 2003 .

[74]  Tyler Raymond Halbert,et al.  An Improved Algorithm for Sequential Information-Gathering Decisions in Design under Uncertainty , 2015 .

[75]  Stefanie Müller,et al.  LaserOrigami: laser-cutting 3D objects , 2013, CHI.

[76]  Hwan Chul Jeon,et al.  Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers. , 2012, Angewandte Chemie.

[77]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[78]  Jie Qi,et al.  Electronic popables: exploring paper-based computing through an interactive pop-up book , 2010, TEI '10.

[79]  Thomas C. Hull Project Origami: Activities for Exploring Mathematics , 2006 .

[80]  Robert J. Wood,et al.  Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms , 2011, 2011 IEEE International Conference on Robotics and Automation.

[81]  Jian S. Dai,et al.  Kinematic and Stiffness Analysis of an Origami-Type Carton , 2013 .

[82]  Tomohiro Tachi,et al.  Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials , 2015, Proceedings of the National Academy of Sciences.

[83]  Tetsuo Ida,et al.  Computational origami environment on the web , 2008, Frontiers of Computer Science in China.

[84]  Evin Gultepe,et al.  Self-folding devices and materials for biomedical applications. , 2012, Trends in biotechnology.

[85]  Dimitris C. Lagoudas,et al.  Analytical investigation of structurally stable configurations in shape memory alloy-actuated plates , 2015 .

[86]  Jiayao Ma,et al.  Energy absorption of thin-walled beams with a pre-folded origami pattern , 2013 .

[87]  E. Rothwell,et al.  An origami tunable metamaterial , 2012 .

[88]  Saad Ahmed,et al.  Electric field-induced bending and folding of polymer sheets , 2017 .

[89]  Valeriy Luchnikov,et al.  Fabrication of metallic microtubes using self-rolled polymer tubes as templates. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[90]  Tomohiro Tachi,et al.  Simulation of Rigid Origami , 2006 .

[91]  Jian S. Dai,et al.  An Extensible Continuum Robot With Integrated Origami Parallel Modules , 2016 .

[92]  Stefan Seelecke,et al.  BATMAV: a biologically inspired micro air vehicle for flapping flight: kinematic modeling , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[93]  Wouter Olthuis,et al.  Hydrogel-based devices for biomedical applications , 2010 .

[94]  Samuel M. Felton,et al.  A method for building self-folding machines , 2014, Science.

[95]  K. Kuribayashi,et al.  A novel foldable stent graft , 2004 .

[96]  Martin L. Dunn,et al.  Active origami by 4D printing , 2014 .

[97]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[98]  David H. Gracias,et al.  Laser triggered sequential folding of microstructures , 2012 .

[99]  Robert J. Wood,et al.  Origami-Inspired Printed Robots , 2015, IEEE/ASME Transactions on Mechatronics.

[100]  Yonggang Huang,et al.  A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes , 2015, Proceedings of the National Academy of Sciences.

[101]  Russell W. Mailen,et al.  Simple geometric model to describe self-folding of polymer sheets. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  Rina Tannenbaum,et al.  Capture/release ability of thermo-responsive polymer particles , 2010 .

[103]  Leonid Ionov,et al.  Shape-programmed folding of stimuli-responsive polymer bilayers. , 2012, ACS nano.

[104]  Spencer P. Magleby,et al.  Accommodating Thickness in Origami-Based Deployable Arrays , 2013 .

[105]  F. Schneider,et al.  Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS , 2009 .

[106]  Bill Goodwine,et al.  A review of origami applications in mechanical engineering , 2016 .

[107]  Dimitris C. Lagoudas,et al.  Kinematics of Origami Structures with Smooth Folds , 2016 .

[108]  Michael J. Escuti,et al.  Three-dimensional folding of pre-strained polymer sheets via absorption of laser light , 2014 .

[109]  R. Xiao,et al.  Functional stimuli responsive hydrogel devices by self-folding , 2014 .

[110]  Yongmin Liu,et al.  Origami‐Based Reconfigurable Metamaterials for Tunable Chirality , 2017, Advanced materials.

[111]  Erik D. Demaine,et al.  Planning to fold multiple objects from a single self-folding sheet , 2011, Robotica.

[112]  M. A. Northrup,et al.  Thin Film Shape Memory Alloy Microactuators , 1996, Microelectromechanical Systems (MEMS).

[113]  George Barbastathis,et al.  Integrated Folding, Alignment, and Latching for Reconfigurable Origami Microelectromechanical Systems , 2015, Journal of Microelectromechanical Systems.

[114]  Robert J. Lang Computational origami: from flapping birds to space telescopes , 2009, SCG '09.

[115]  Yang Li,et al.  Thin-Walled Open-Section Origami Beams for Energy Absorption , 2014 .

[116]  Marc Grzeschik,et al.  Performance of Foldcores Mechanical Properties and Testing , 2013 .

[117]  M. Jamal,et al.  Enzymatically triggered actuation of miniaturized tools. , 2010, Journal of the American Chemical Society.

[118]  Mary Frecker,et al.  Multi-Field Responsive Origami Structures: Preliminary Modeling and Experiments , 2013 .

[119]  Robert J. Wood,et al.  An end-to-end approach to making self-folded 3D surface shapes by uniform heating , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[120]  J. Reddy An introduction to the finite element method , 1989 .

[121]  Dirk J. Broer,et al.  Accordion‐like Actuators of Multiple 3D Patterned Liquid Crystal Polymer Films , 2014 .

[122]  Robert J. Lang Origami: Complexity in Creases (Again) , 2004 .

[123]  Tetsuo Ida,et al.  Computational Origami System Eos , 2006 .

[124]  Rui Peng,et al.  Origami of thick panels , 2015, Science.

[125]  Ashley P. Thrall,et al.  Accordion shelters: A historical review of origami-like deployable shelters developed by the US military , 2014 .

[126]  Tetsuo Ida,et al.  Origami axioms and circle extension , 2011, SAC '11.

[127]  Erik D. Demaine,et al.  Folding Flat Crease Patterns with Thick Materials , 2015, ArXiv.

[128]  Markus Löchtefeld,et al.  Morphees: toward high "shape resolution" in self-actuated flexible mobile devices , 2013, CHI.

[129]  Stefan Seelecke,et al.  BATMAV: a 2-DOF bio-inspired flapping flight platform , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[130]  Mary Frecker,et al.  Finite element analysis and validation of dielectric elastomer actuators used for active origami , 2014 .

[131]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[132]  Cagdas D. Onal,et al.  OriSnake: Design, Fabrication, and Experimental Analysis of a 3-D Origami Snake Robot , 2018, IEEE Robotics and Automation Letters.

[133]  Simon D. Guest,et al.  Origami folding: A Structural Engineering Approach , 2011 .

[134]  Hao Yan,et al.  DNA origami: a history and current perspective. , 2010, Current opinion in chemical biology.

[135]  Kazuko Fuchi,et al.  Topology optimization for the design of folding liquid crystal elastomer actuators. , 2015, Soft matter.

[136]  Fan Liu,et al.  Soft mobile robots driven by foldable dielectric elastomer actuators , 2016 .

[137]  Yonggang Huang,et al.  Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling , 2017 .

[138]  Spencer P. Magleby,et al.  HanaFlex: a large solar array for space applications , 2015, Defense + Security Symposium.

[139]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[140]  Donald J. Leo,et al.  Engineering Analysis of Smart Material Systems: Leo/Smart Material Systems , 2008 .

[141]  Gregory W. Reich,et al.  Design Optimization Challenges of Origami-Based Mechanisms With Sequenced Folding , 2016 .

[142]  Mary Frecker,et al.  Differentiating Bending From Folding in Origami Engineering Using Active Materials , 2014 .

[143]  Gregory W. Reich,et al.  Origami Actuator Design and Networking Through Crease Topology Optimization , 2015 .

[144]  Hidenori Okuzaki,et al.  Humidity‐Sensitive Polypyrrole Films for Electro‐Active Polymer Actuators , 2013 .

[145]  H. Okuzaki,et al.  A biomorphic origami actuator fabricated by folding a conducting paper , 2008 .

[146]  Joseph S. B. Mitchell,et al.  Folding flat silhouettes and wrapping polyhedral packages: New results in computational origami , 2000, Comput. Geom..

[147]  Wei Li,et al.  A Novel Method to Design and Optimize Flat-Foldable Origami Structures Through a Genetic Algorithm , 2014, J. Comput. Inf. Sci. Eng..

[148]  Ergun Akleman,et al.  Towards building smart self-folding structures , 2013, Comput. Graph..

[149]  Hongyan He,et al.  Design of a novel hydrogel-based intelligent system for controlled drug release. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[150]  Mark Yim,et al.  Dielectric elastomer bender actuator applied to modular robotics , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[151]  Wei Gao,et al.  Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding , 2013 .

[152]  Joseph M. Gattas,et al.  The behaviour of curved-crease foldcores under low-velocity impact loads , 2015 .

[153]  Alastair Johnson,et al.  Mechanical tests for foldcore base material properties , 2009 .

[154]  Jian S. Dai,et al.  Kinematic Analysis and Stiffness Validation of Origami Cartons , 2013 .

[155]  Shuji Hashimoto,et al.  Origami Robot: A Self-Folding Paper Robot With an Electrothermal Actuator Created by Printing , 2016, IEEE/ASME Transactions on Mechatronics.

[156]  Mohammed A. Zikry,et al.  A fully coupled thermo‐viscoelastic finite element model for self‐folding shape memory polymer sheets , 2017 .

[157]  Alexander Pagano,et al.  A crawling robot driven by multi-stable origami , 2017 .

[158]  Ole Sigmund,et al.  Extensions and applications , 2004 .

[159]  P. McHugh,et al.  A review on dielectric elastomer actuators, technology, applications, and challenges , 2008 .

[160]  Daniel M. Aukes,et al.  Self-folding with shape memory composites at the millimeter scale , 2015 .

[161]  Rubik B. Sheth,et al.  A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles , 2015 .

[162]  Spencer P. Magleby,et al.  An Origami-Inspired Self-Deployable Array , 2013 .

[163]  Darren J. Hartl,et al.  An Origami-Inspired, SMA Actuated Lifting Structure , 2016 .

[164]  Arthur Lebée,et al.  From Folds to Structures, a Review , 2015 .

[165]  Jamie Kyujin Paik,et al.  The design and control of the multi-modal locomotion origami robot, Tribot , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[166]  Mary Frecker,et al.  Optimization of a Dynamic Model of Magnetic Actuation of an Origami Mechanism , 2015 .

[167]  Alejandro R. Diaz Origami Folding and Bar Frameworks , 2014 .

[168]  Thomas C. Hull,et al.  Using origami design principles to fold reprogrammable mechanical metamaterials , 2014, Science.

[169]  Mary Frecker,et al.  Bistable compliant mechanism using magneto active elastomer actuation , 2014 .

[170]  M. Dickey,et al.  Self-Folding Origami Microstrip Antennas , 2014, IEEE Transactions on Antennas and Propagation.

[171]  Yoji Okabe,et al.  Designing of self-deploying origami structures using geometrically misaligned crease patterns , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[172]  Mary Frecker,et al.  Development and Validation of a Dynamic Model of Magneto-Active Elastomer Actuation of the Origami Waterbomb Base , 2015 .

[173]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[174]  Hongyan He,et al.  An oral delivery device based on self-folding hydrogels. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[175]  Hoon Cheol Park,et al.  Design and demonstration of insect mimicking foldable artificial wing using four-bar linkage systems , 2014 .

[176]  James G. Boyd,et al.  Modeling and development of a twisting wing using inductively heated shape memory alloy actuators , 2015, Smart Structures.

[177]  Ashley P. Thrall,et al.  Balancing energy efficiency and structural performance through multi-objective shape optimization: Case study of a rapidly deployable origami-inspired shelter , 2014 .

[178]  Darren J. Hartl,et al.  Computational Design of a Reconfigurable Origami Space Structure Incorporating Shape Memory Alloy Thin Films , 2012 .

[179]  Yi Sun,et al.  Sensor and actuator integrated low-profile robotic origami , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[180]  R. J. Wood,et al.  An Origami-Inspired Approach to Worm Robots , 2013, IEEE/ASME Transactions on Mechatronics.

[181]  R. Lang Origami Design Secrets: Mathematical Methods for an Ancient Art , 2003 .

[182]  Candace K. Chan,et al.  Origami lithium-ion batteries , 2014, Nature Communications.

[183]  J. A. Logan,et al.  Electrochemistry of conducting polypyrrole films , 1981 .

[184]  D. Gracias,et al.  Microassembly based on hands free origami with bidirectional curvature. , 2009, Applied physics letters.

[185]  K. Eriksson,et al.  Airbag Folding Based on Origami Mathematics , 2006 .

[186]  Anton Nijholt,et al.  Smart material interfaces as a methodology for interaction: a survey of SMIs' state of the art and development , 2013, SMI '13.

[187]  Manos M. Tentzeris,et al.  An Origami Inspired Reconfigurable Spiral Antenna , 2014 .

[188]  M. Frecker,et al.  Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures , 2014 .

[189]  J. Silverberg,et al.  Lattice mechanics of origami tessellations. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[190]  Dimitris C. Lagoudas,et al.  Modeling of Shape Memory Alloy Wire Meshes Using Effective Lamina Properties for Improved Analysis Efficiency , 2013 .

[191]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[192]  Alfred J. Crosby,et al.  Adaptive polymer particles , 2008 .

[193]  R. Lang,et al.  The science of origami , 2007 .

[194]  Y. Tai,et al.  A MEMS intraocular origami coil , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[195]  Jiayao Ma,et al.  An origami-inspired structure with graded stiffness , 2018 .

[196]  G H Paulino,et al.  Origami tubes with reconfigurable polygonal cross-sections , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[197]  Yan Chen,et al.  Axial crushing of thin-walled structures with origami patterns , 2012 .

[198]  Robert J. Wood,et al.  Robotic Origamis: Self-morphing Modular Robot , 2012 .

[199]  Masahiko Inami,et al.  Animated paper: A toolkit for building moving toys , 2010, CIE.

[200]  Daniela Rus,et al.  Self-folded soft robotic structures with controllable joints , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[201]  Hongen Tu,et al.  Origami-enabled deformable silicon solar cells , 2014 .

[202]  Darren J. Hartl,et al.  Design of a Massively Reconfigurable Origami Space Structure Incorporating Shape Memory Alloys , 2012 .

[203]  Spencer P. Magleby,et al.  Accommodating Thickness in Origami-Based Deployable Arrays , 2013 .

[204]  Tetsuo Ida,et al.  Modeling Origami for Computational Construction and Beyond , 2007, ICCSA.

[205]  Nikhil Koratkar,et al.  Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors , 2015 .

[206]  Hisaaki Tobushi,et al.  Thermomechanical Constitutive Modeling in Shape Memory Polymer of Polyurethane Series , 1997 .

[207]  Leonid Ionov,et al.  Soft microorigami: self-folding polymer films , 2011 .

[208]  Jiayao Ma,et al.  Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation , 2014 .

[209]  Larry L. Howell,et al.  Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers , 2015 .

[210]  Shigeki Nashima,et al.  Optical actuation of micromirrors fabricated by the micro-origami technique , 2003 .

[211]  M. Dickey,et al.  Self-folding of polymer sheets using local light absorption , 2012 .

[212]  Sebastian Heimbs,et al.  Virtual testing of sandwich core structures using dynamic finite element simulations , 2009 .

[213]  Jiayao Ma,et al.  Axial Crushing of Thin-Walled Tubes With Kite-Shape Pattern , 2015 .

[214]  Larry L. Howell,et al.  Rigidly foldable origami gadgets and tessellations , 2015, Royal Society Open Science.

[215]  Xuanhe Zhao,et al.  Tunable lotus-leaf and rose-petal effects via graphene paper origami , 2015 .

[216]  Tomohiro Tachi,et al.  3D Origami Design based on Tucking Molecule , 2008 .

[217]  Tomohiro Tachi,et al.  Freeform Variations of Origami , 2010 .

[218]  Hua Ma,et al.  Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption , 2015 .

[219]  Quan Li,et al.  Intelligent stimuli-responsive materials : from well-defined nanostructures to applications , 2013 .

[220]  Ryuhei Uehara,et al.  On a Stiffness Model for Origami Folding , 2015 .

[221]  Darren J. Hartl,et al.  Design and numerical analysis of an SMA mesh-based self-folding sheet , 2013 .

[222]  Victor Ya. Prinz,et al.  Application of semiconductor micro- and nanotubes in biology , 2003 .

[223]  Leonid Ionov,et al.  Nature‐Inspired Stimuli‐Responsive Self‐Folding Materials , 2013 .

[224]  E. Demaine,et al.  Self-folding with shape memory composites† , 2013 .

[225]  Emmanuel Baranger,et al.  Sandwich Structures with folded core: mechanical modeling and impact simulations , 2009 .

[226]  Ronald S. Fearing,et al.  Fast scale prototyping for folded millirobots , 2008, ICRA.

[227]  Wei Jiang,et al.  Origami-inspired building block and parametric design for mechanical metamaterials , 2016 .

[228]  Yoji Okabe,et al.  New Deployable Structures Based on an Elastic Origami Model , 2015 .

[229]  Alastair Johnson Novel hybrid structural core sandwich materials for aircraft applications , 2008 .

[230]  Meie Li,et al.  Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels , 2013 .

[231]  Darren J. Hartl,et al.  POP-OP: A Shape Memory-Based Morphing Wall , 2013 .

[232]  A. Diaz,et al.  Mechanical properties of electrochemically prepared polypyrrole films , 1983 .

[233]  Kyu-Jin Cho,et al.  The Deformable Wheel Robot Using Magic-Ball Origami Structure , 2013 .

[234]  L. J. Lee,et al.  Self-folding of three-dimensional hydrogel microstructures. , 2005, The journal of physical chemistry. B.

[235]  Neil Morgan,et al.  Medical shape memory alloy applications—the market and its products , 2004 .

[236]  Erik D. Demaine,et al.  (Non)Existence of Pleated Folds: How Paper Folds Between Creases , 2009, Graphs Comb..

[237]  Yi Min Xie,et al.  Energy absorption of thin-walled tubes with pre-folded origami patterns: Numerical simulation and experimental verification , 2016 .

[238]  W. Liu,et al.  Optimal design of flat patterns for 3D folded structures by unfolding with topological validation , 2007, Comput. Aided Des..

[239]  Kyu-Jin Cho,et al.  Curved Compliant Facet Origami-Based Self-Deployable Gliding Wing Module for Jump-Gliding , 2016 .

[240]  Kening Zhu,et al.  Snap-n-fold: origami pattern generation based real-life object structure , 2012, CHI EA '12.

[241]  Valeriy Luchnikov,et al.  Toroidal hollow-core microcavities produced by self-rolling of strained polymer bilayer films , 2008, 2301.06922.

[242]  Robert J. Wood,et al.  Robot self-assembly by folding: A printed inchworm robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[243]  Shoji Takeuchi,et al.  Foldable Parylene Origami Sheets Covered with Cells: Toward Applications in Bio-Implantable Devices , 2016 .

[244]  R. Fernandes,et al.  Self-folding polymeric containers for encapsulation and delivery of drugs. , 2012, Advanced drug delivery reviews.

[245]  Roel Vertegaal,et al.  PaperFold: Evaluating Shape Changes for Viewport Transformations in Foldable Thin-Film Display Devices , 2015, Tangible and Embedded Interaction.

[246]  LeeDae-Young,et al.  Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure. , 2017 .

[247]  Tetsuo Ida,et al.  Logical and algebraic view of Huzita's origami axioms with applications to computational origami , 2007, SAC '07.

[248]  Paris von Lockette,et al.  Folding Actuation and Locomotion of Novel Magneto-Active Elastomer (MAE) Composites , 2013 .

[249]  Stephen Z. D. Cheng,et al.  Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms , 2011 .

[250]  H Tanaka,et al.  Programmable matter by folding , 2010, Proceedings of the National Academy of Sciences.

[251]  David Pohl,et al.  Engineered spacecraft deployables influenced by nature , 2009, Optical Engineering + Applications.

[252]  C. P. Quagli,et al.  Parametric modelling of an air-liftable origami-inspired deployable shelter with a novel erection strategy , 2014 .

[253]  M. Adda-Bedia,et al.  Elastic theory of origami-based metamaterials. , 2016, Physical review. E.

[254]  Tomohiro Tachi,et al.  Rigid-Foldable Thick Origami , 2010 .

[255]  Brian Sanders,et al.  Vibration and Flutter Characteristics of a Folding Wing , 2009 .

[256]  Yiping Liu,et al.  Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling , 2006 .

[257]  Tomohiro Tachi Geometric Considerations for the Design of Rigid Origami Structures , 2010 .

[258]  Hani E. Naguib,et al.  Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends , 2016, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[259]  Tomohiro Tachi,et al.  Origamizing Polyhedral Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[260]  Yao Wang,et al.  Quilt pattern inspired engineering: Efficient manufacturing of shelter topologies , 2016 .

[261]  Yonggang Huang,et al.  Controlled Mechanical Buckling for Origami‐Inspired Construction of 3D Microstructures in Advanced Materials , 2016, Advanced functional materials.

[262]  Chia-Hung Yeh,et al.  Content-aware Image Retargeting for Image Display on Foldable Mobile Devices , 2015, FNC/MobiSPC.

[263]  Shigeki Nashima,et al.  Characterization of GaAs-based micro-origami mirrors by optical actuation , 2004 .

[264]  Isaac L. Delimont,et al.  Material selection for elastic energy absorption in origami-inspired compliant corrugations , 2014 .

[265]  Scott A. Mathews,et al.  Laser origami: a new technique for assembling 3D microstructures , 2012, Other Conferences.

[266]  Mary Frecker,et al.  Trade Space Exploration of Magnetically Actuated Origami Mechanisms , 2016 .

[267]  Leonid Ionov,et al.  Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds. , 2011, Biomacromolecules.

[268]  Tomohiro Tachi Designing Rigidly Foldable Horns Using Bricard's Octahedron , 2015 .

[269]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[270]  P. Krulevitch,et al.  A practical microgripper by fine alignment, eutectic bonding and SMA actuation , 1995 .

[271]  H. Reimerdes,et al.  Numerical comparison between different strength after impact test procedures , 2010 .

[272]  Frank Simon,et al.  A Novel Approach for the Fabrication of Silica and Silica/Metal Hybrid Microtubes , 2009 .

[273]  David H Gracias,et al.  Three-dimensional fabrication at small size scales. , 2010, Small.

[274]  Z. You Folding structures out of flat materials , 2014, Science.

[275]  Christopher L. Bertagne,et al.  Simulating coupled thermal-mechanical interactions in morphing radiators , 2015, Smart Structures.

[276]  Joseph M. Gattas,et al.  Quasi-static crushing of eggbox, cube, and modified cube foldcore sandwich structures , 2015 .

[277]  Thomas C. Hull,et al.  Modelling the folding of paper into three dimensions using affine transformations , 2002 .

[278]  E. Carrera Theories and finite elements for multilayered, anisotropic, composite plates and shells , 2002 .

[279]  L G Machado,et al.  Medical applications of shape memory alloys. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[280]  Daniela Rus,et al.  An untethered miniature origami robot that self-folds, walks, swims, and degrades , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[281]  Terrence A. Weisshaar,et al.  Aeroelastic Studies on a Folding Wing Configuration , 2005 .

[282]  Kyu-Jin Cho,et al.  Design of deformable-wheeled robot based on origami structure with shape memory alloy coil spring , 2013, 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[283]  Gregory S. Chirikjian,et al.  Origami Rotors: Imparting Continuous Rotation to a Moving Platform Using Compliant Flexure Hinges , 2013 .

[284]  D. Lagoudas,et al.  Introduction to Shape Memory Alloys , 2021, Advanced Topics of Thin-Walled Structures.

[285]  Alastair Johnson,et al.  Experimental and Numerical Analysis of Composite Folded Sandwich Core Structures Under Compression , 2007 .

[286]  Gregory W. Reich,et al.  Inverse Design of LCN Films for Origami Applications Using Topology Optimization , 2014 .

[287]  Robert J. Lang,et al.  One-, Two-, and Multi-Fold Origami Axioms , 2006 .

[288]  Thomas Tørring,et al.  DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.

[289]  K. Bertoldi,et al.  Origami Metamaterials for Tunable Thermal Expansion , 2017, Advanced materials.

[290]  Dimitris C. Lagoudas,et al.  Design and Analysis of a Self-Folding SMA-SMP Composite Laminate , 2014 .

[291]  James G. Boyd,et al.  A validated model for induction heating of shape memory alloy actuators , 2016 .

[292]  Zhong You,et al.  Modelling rigid origami with quaternions and dual quaternions , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[293]  Dimitris C. Lagoudas,et al.  Origami-inspired active structures: a synthesis and review , 2014 .