Tree Algorithms in Wavelet Approximations by Helmholtz Potential Operators
暂无分享,去创建一个
[1] R. Franke,et al. A Survey on Spherical Spline Approximation , 1995 .
[2] J. Schauder,et al. Potentialtheoretische Untersuchungen , 1931 .
[3] S. Timoshenko,et al. Theory of elasticity , 1975 .
[4] Leonid Kantorovich,et al. Funktionalanalysis in normierten Räumen , 1978 .
[5] Peter D. Lax,et al. Symmetrizable linear transformations , 1954 .
[6] Claus Müller,et al. Foundations of the mathematical theory of electromagnetic waves , 1969 .
[7] Ian H. Sloan,et al. Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in ${\mathbb R}^3$ , 2002, Numerische Mathematik.
[8] Volker Schönefeld. Spherical Harmonics , 2019, An Introduction to Radio Astronomy.
[9] L. L. Helms. Einführung in die Potentialtheorie , 1973 .
[10] Willi Freeden,et al. Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .
[11] Willi Freeden,et al. On the approximation of external gravitational potential with closed systems of (trial) functions , 1980 .
[12] W. Freeden,et al. Spectral and Multiscale Signal-To-Noise Thresholding of Spherical Scalar Fields , 2001 .
[13] Heinrich Kersten,et al. Grenz- und Sprungrelationen für Potentiale mit quadrat-summierbarer Flächenbelegung , 1980 .
[14] Willi Freeden,et al. ber die Gausche Methode zur angenherten Berechnung von Integralen , 1980 .
[15] Carsten Mayer,et al. Wavelets Generated by Layer Potentials , 2003 .
[16] W. Freeden,et al. Spherical wavelet transform and its discretization , 1996 .