Tree Algorithms in Wavelet Approximations by Helmholtz Potential Operators

Abstract By means of the limit and jump relations of classical potential theory with respect to the Helmholtz equation a wavelet approach is established on a regular surface. The multiscale procedure is constructed in such a way that the emerging potential kernels act as scaling functions, wavelets are defined via a canonical refinement equation. A tree algorithm for fast computation of a function discretely given on a regular surface is developed based on numerical integration rules. By virtue of the tree algorithm, an efficient numerical method for the solution of Fredholm integral equations involving boundary-value problems of the Helmholtz equation corresponding to (general) regular (boundary) surfaces is discussed in more detail.

[1]  R. Franke,et al.  A Survey on Spherical Spline Approximation , 1995 .

[2]  J. Schauder,et al.  Potentialtheoretische Untersuchungen , 1931 .

[3]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[4]  Leonid Kantorovich,et al.  Funktionalanalysis in normierten Räumen , 1978 .

[5]  Peter D. Lax,et al.  Symmetrizable linear transformations , 1954 .

[6]  Claus Müller,et al.  Foundations of the mathematical theory of electromagnetic waves , 1969 .

[7]  Ian H. Sloan,et al.  Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in ${\mathbb R}^3$ , 2002, Numerische Mathematik.

[8]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[9]  L. L. Helms Einführung in die Potentialtheorie , 1973 .

[10]  Willi Freeden,et al.  Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .

[11]  Willi Freeden,et al.  On the approximation of external gravitational potential with closed systems of (trial) functions , 1980 .

[12]  W. Freeden,et al.  Spectral and Multiscale Signal-To-Noise Thresholding of Spherical Scalar Fields , 2001 .

[13]  Heinrich Kersten,et al.  Grenz- und Sprungrelationen für Potentiale mit quadrat-summierbarer Flächenbelegung , 1980 .

[14]  Willi Freeden,et al.  ber die Gausche Methode zur angenherten Berechnung von Integralen , 1980 .

[15]  Carsten Mayer,et al.  Wavelets Generated by Layer Potentials , 2003 .

[16]  W. Freeden,et al.  Spherical wavelet transform and its discretization , 1996 .