combined optical neural control and fMRI Mapping brain networks in awake mice using

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[3]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[5]  Christopher I. Moore,et al.  High-Field (9.4T) Magnetic Resonance Imaging in Squirrel Monkey , 2006 .

[6]  Christoph M. Michel,et al.  A mouse model for studying large-scale neuronal networks using EEG mapping techniques , 2008, NeuroImage.

[7]  Michelle Hampson,et al.  Connectivity–behavior analysis reveals that functional connectivity between left BA39 and Broca's area varies with reading ability , 2006, NeuroImage.

[8]  N. Logothetis,et al.  The effects of electrical microstimulation on cortical signal propagation , 2010, Nature Neuroscience.

[9]  D. Simons,et al.  Somatotopic organization of the second somatosensory area (SII) in the cerebral cortex of the mouse. , 1986, Somatosensory research.

[10]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[11]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[12]  Jonathan D. Cohen,et al.  Improved Assessment of Significant Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster‐Size Threshold , 1995, Magnetic resonance in medicine.

[13]  J. B. Ranck,et al.  Which elements are excited in electrical stimulation of mammalian central nervous system: A review , 1975, Brain Research.

[14]  Emery N Brown,et al.  Activity in the barrel cortex during active behavior and sleep. , 2010, Journal of neurophysiology.

[15]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[16]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[17]  Shubhodeep Chakrabarti,et al.  Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI , 2006, The Journal of comparative neurology.

[18]  R. Reid,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Methods Article , 2022 .

[19]  E. White,et al.  Afferent and efferent projections of the region in mouse sml cortex which contains the posteromedial barrel subfield , 1977, The Journal of comparative neurology.

[20]  D. Kleinfeld,et al.  'Where' and 'what' in the whisker sensorimotor system , 2008, Nature Reviews Neuroscience.

[21]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[22]  Wei Chen,et al.  Procedure for minimizing stress for fMRI studies in conscious rats , 2005, Journal of Neuroscience Methods.

[23]  E. J. Tehovnik,et al.  Direct and indirect activation of cortical neurons by electrical microstimulation. , 2006, Journal of neurophysiology.

[24]  Jack L. Lancaster,et al.  Clustered pixels analysis for functional MRI activation studies of the human brain , 1995 .

[25]  T. Tsurugizawa,et al.  Effects of isoflurane and alpha-chloralose anesthesia on BOLD fMRI responses to ingested l-glutamate in rats , 2010, Neuroscience.

[26]  Dae-Shik Kim,et al.  Global and local fMRI signals driven by neurons defined optogenetically by type and wiring , 2010, Nature.

[27]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[28]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[29]  Edward S Boyden,et al.  Active Reversal of Motor Memories Reveals Rules Governing Memory Encoding , 2003, Neuron.

[30]  N. Logothetis,et al.  MR imaging in the non-human primate: studies of function and of dynamic connectivity , 2003, Current Opinion in Neurobiology.

[31]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[32]  Mark Augath,et al.  BOLD sensitivity to cortical activation induced by microstimulation: comparison to visual stimulation. , 2007, Magnetic resonance imaging.

[33]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[34]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M E Raichle,et al.  Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Turner,et al.  Does Hypercapnia-Induced Cerebral Vasodilation Modulate the Hemodynamic Response to Neural Activation? , 2001, NeuroImage.

[37]  C. Petersen,et al.  Long‐range connectivity of mouse primary somatosensory barrel cortex , 2010, The European journal of neuroscience.

[38]  M. Lindquist The Statistical Analysis of fMRI Data. , 2008, 0906.3662.

[39]  Karl Deisseroth,et al.  Improved expression of halorhodopsin for light-induced silencing of neuronal activity , 2008, Brain cell biology.

[40]  N. Logothetis,et al.  Electric stimulation fMRI of the perforant pathway to the rat hippocampus. , 2008, Magnetic resonance imaging.

[41]  Archana Venkataraman,et al.  Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. , 2010, Journal of neurophysiology.

[42]  D. Simons,et al.  Thalamic and corticocortical connections of the second somatic sensory area of the mouse , 1987, The Journal of comparative neurology.

[43]  P. Boesiger,et al.  Reduced field‐of‐view MRI using outer volume suppression for spinal cord diffusion imaging , 2007, Magnetic resonance in medicine.

[44]  Robert Turner,et al.  3D DT‐MRI using a reduced‐FOV approach and saturation pulses , 2004, Magnetic resonance in medicine.

[45]  T. Duong,et al.  Regional Cerebral Blood Flow and BOLD Responses in Conscious and Anesthetized Rats under Basal and Hypercapnic Conditions: Implications for Functional MRI Studies , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[46]  Jessica A. Cardin,et al.  Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2 , 2010, Nature Protocols.

[47]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[48]  J. Duyn,et al.  Investigation of Low Frequency Drift in fMRI Signal , 1999, NeuroImage.

[49]  Raag D. Airan,et al.  Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures , 2010, Nature Protocols.

[50]  P. Roelfsema,et al.  Modulation of the Contrast Response Function by Electrical Microstimulation of the Macaque Frontal Eye Field , 2009, The Journal of Neuroscience.

[51]  C. Ferris,et al.  Imaging brain activity in conscious animals using functional MRI , 1998, Journal of Neuroscience Methods.

[52]  Timothy Edward John Behrens,et al.  New approaches for exploring anatomical and functional connectivity in the human brain , 2004, Biological Psychiatry.

[53]  M. West Anesthetics Eliminate Somatosensory-Evoked Discharges of Neurons in the Somatotopically Organized Sensorimotor Striatum of the Rat , 1998, The Journal of Neuroscience.

[54]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[55]  E. J. Tehovnik,et al.  Mapping Cortical Activity Elicited with Electrical Microstimulation Using fMRI in the Macaque , 2005, Neuron.

[56]  A. Meyer-Lindenberg,et al.  5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression , 2005, Nature Neuroscience.

[57]  E Kochs,et al.  Differential effects of isoflurane on excitatory and inhibitory synaptic inputs to thalamic neurones in vivo. , 2002, British journal of anaesthesia.

[58]  B. Matta,et al.  Direct cerebral vasodilatory effects of sevoflurane and isoflurane. , 1999, Anesthesiology.

[59]  Seong-Gi Kim,et al.  Neural Interpretation of Blood Oxygenation Level-Dependent fMRI Maps at Submillimeter Columnar Resolution , 2007, The Journal of Neuroscience.

[60]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[61]  Dae-Shik Kim,et al.  High-resolution mapping of iso-orientation columns by fMRI , 2000, Nature Neuroscience.

[62]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[63]  T. Murphy,et al.  Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice , 2009, Nature Methods.

[64]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[65]  Gustavo Deco,et al.  The Brain Connectivity Workshops: Moving the frontiers of computational systems neuroscience , 2008, NeuroImage.

[66]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[67]  E. Boyden,et al.  Selective Engagement of Plasticity Mechanisms for Motor Memory Storage , 2006, Neuron.

[68]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .