The fractional Boltzmann transport equation

The fractional Boltzmann transport equation is derived making use of the fractional Hamilton's equations based on the fractional actionlike variational approach. By simply defining a distribution function and inspecting its time derivative, many important results in statistical physics can be derived.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  Delfim F. M. Torres,et al.  Constants of motion for fractional action-like variational problems , 2006, math/0607472.

[3]  J. A. Tenreiro Machado,et al.  Special Issue on “Discontinuous and Fractional Dynamical Systems” , 2008 .

[4]  Fractional dynamic symmetries and the ground state properties of nuclei , 2008, 0806.2300.

[5]  R. Herrmann Higher-dimensional mixed fractional rotation groups as a basis for dynamic symmetries generating the spectrum of the deformed Nilsson oscillator , 2010 .

[6]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[7]  El-nabulsi Ahmad Rami Fractional dynamics, fractional weak bosons masses and physics beyond the standard model , 2009 .

[8]  R A El Nabulsi,et al.  A FRACTIONAL ACTION-LIKE VARIATIONAL APPROACH OF SOME CLASSICAL, QUANTUM AND GEOMETRICAL DYNAMICS , 2005 .

[9]  R. Sibatov,et al.  Fractional differential kinetics of charge transport in unordered semiconductors , 2007 .

[10]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[11]  Carl F. Lorenzo,et al.  Fractional Trigonometry and the Spiral Functions , 2004 .

[12]  The fractional symmetric rigid rotor , 2006, nucl-th/0610091.

[13]  Claude Garrod,et al.  Statistical mechanics and thermodynamics , 1995 .

[14]  V. E. Tarasov Fractional Vector Calculus and Fractional Maxwell's Equations , 2008, 0907.2363.

[15]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[16]  G. Kalman Strongly Coupled Coulomb Systems , 2013 .

[17]  Fractional Boltzmann equation for resonance radiation transport in plasma , 2010, 1008.4439.

[18]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[19]  Malgorzata Klimek,et al.  Lagrangean and Hamiltonian fractional sequential mechanics , 2002 .

[20]  Denis Serre,et al.  Handbook of mathematical fluid dynamics , 2002 .

[21]  Rami Ahmad El-Nabulsi,et al.  Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator , 2011 .

[22]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[24]  V. Zolotarev,et al.  Superdiffusion and stable laws , 1999 .

[25]  V. E. Tarasov Fractional variations for dynamical systems: Hamilton and Lagrange approaches , 2006, math-ph/0606048.

[26]  ENTROPY PRODUCTION AND CONVERGENCE TO EQUILIBRIUM FOR THE BOLTZMANN EQUATION , 2006 .

[27]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  K. Tas,et al.  Fractional hamiltonian analysis of higher order derivatives systems , 2006, math-ph/0612024.

[29]  Mohamed A. E. Herzallah,et al.  Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations , 2009 .

[30]  Jacky Cresson,et al.  Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.

[31]  A. R. El-Nabulsi FRACTIONAL QUANTUM EULER–CAUCHY EQUATION IN THE SCHRÖDINGER PICTURE, COMPLEXIFIED HARMONIC OSCILLATORS AND EMERGENCE OF COMPLEXIFIED LAGRANGIAN AND HAMILTONIAN DYNAMICS , 2009 .

[32]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[33]  Investigation of apparent violation of the second law of thermodynamics in quantum transport studies , 2002, cond-mat/0204302.

[34]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[35]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[36]  Ervin Goldfain,et al.  Complexity in quantum field theory and physics beyond the standard model , 2005 .

[37]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[38]  A. Raspini Simple Solutions of the Fractional Dirac Equation of Order 2/3 , 2001 .

[39]  Dumitru Baleanu,et al.  Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives , 2005 .

[40]  Rami Ahmad El-Nabulsi,et al.  FRACTIONAL FIELD THEORIES FROM MULTI-DIMENSIONAL FRACTIONAL VARIATIONAL PROBLEMS , 2008 .

[41]  Om P. Agrawal,et al.  Fractional variational calculus and the transversality conditions , 2006 .

[42]  I. Sokolov,et al.  Anomalous transport : foundations and applications , 2008 .

[43]  Cédric Villani,et al.  On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation , 2005 .

[44]  Delfim F. M. Torres,et al.  A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007 .

[45]  Delfim F. M. Torres,et al.  Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) , 2007 .

[46]  R. Nabulsi,et al.  A FRACTIONAL APPROACH TO NON-CONSERVATIVE LAGRANGIAN DYNAMICAL SYSTEMS , 2005 .

[47]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[48]  T. Pritz,et al.  ANALYSIS OF FOUR-PARAMETER FRACTIONAL DERIVATIVE MODEL OF REAL SOLID MATERIALS , 1996 .

[49]  O. Agrawal,et al.  Fractional hamilton formalism within caputo’s derivative , 2006, math-ph/0612025.

[50]  Vasily E. Tarasov,et al.  Fokker–Planck equation with fractional coordinate derivatives , 2008, 0805.0606.

[51]  José António Tenreiro Machado,et al.  Fractional calculus applications in signals and systems , 2006, Signal Processing.

[52]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[53]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[54]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[55]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[56]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[57]  D. Villamaina,et al.  On anomalous diffusion and the out of equilibrium response function in one-dimensional models , 2011, 1101.4097.

[58]  Dumitru Baleanu,et al.  Fractional Nambu Mechanics , 2009 .

[59]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[60]  J. Craggs Applied Mathematical Sciences , 1973 .

[61]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[62]  J. Klafter,et al.  Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .

[63]  Delfim F. M. Torres,et al.  Fractional actionlike variational problems , 2008, 0804.4500.

[64]  SUBDIFFUSION OVER FRACTIONAL QUANTUM PATHS WITHOUT FRACTIONAL DERIVATIVE , 2008 .

[65]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[66]  Teodor M. Atanackovic,et al.  An Expansion Formula for Fractional Derivatives and its Application , 2004 .

[67]  V. E. Tarasov Fractional generalization of gradient and hamiltonian systems , 2005, math/0602208.

[68]  REVIEWS OF TOPICAL PROBLEMS: Fractional differential approach to dispersive transport in semiconductors , 2009 .

[69]  R. El-Nabulsi MODIFICATIONS AT LARGE DISTANCES FROM FRACTIONAL AND FRACTAL ARGUMENTS , 2010 .

[70]  Radu Balescu,et al.  Statistical dynamics: matter out of equilibrium , 1997 .

[71]  I. Podlubny Fractional differential equations , 1998 .

[72]  J. Rogers Chaos , 1876 .

[73]  José António Tenreiro Machado,et al.  Fractional differentiation and its applications I , 2013, Comput. Math. Appl..

[74]  Fractional Poisson Bracket , 2008, 0807.4255.

[75]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  El-nabulsi Ahmad Rami On the fractional minimal length Heisenberg–Weyl uncertainty relation from fractional Riccati generalized momentum operator , 2009 .

[77]  J. A. Tenreiro Machado,et al.  New Trends in Nanotechnology and Fractional Calculus Applications , 2010 .

[78]  D.Baleanu,et al.  Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives , 2005, hep-th/0510071.

[79]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[80]  R. Gorenflo,et al.  AN OPERATIONAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE CAPUTO DERIVATIVES , 1999 .

[81]  Malgorzata Klimek,et al.  Fractional sequential mechanics — models with symmetric fractional derivative , 2001 .

[82]  V. Uchaikin Subdiffusion and stable laws , 1999 .

[83]  A. R. El-Nabulsi THE FRACTIONAL CALCULUS OF VARIATIONS FROM EXTENDED ERDÉLYI-KOBER OPERATOR , 2009 .

[84]  E. T. Jaynes,et al.  Violation of Boltzmann's H Theorem in Real Gases , 1971 .

[85]  O. Agrawal,et al.  A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives , 2002 .

[86]  Debra J Searles,et al.  Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. , 2002, Physical review letters.

[87]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[88]  Ravi P. Agarwal,et al.  Existence of fractional neutral functional differential equations , 2010, Comput. Math. Appl..