A-Source Impedance Network

A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other magnetically coupled impedance source networks to attain a high voltage gain. In addition, the proposed converter draws a continuous current from the source, and hence it is suitable for many types of renewable energy sources. The derived network expressions and theoretical analysis are finally validated experimentally with an example single-switch 400-W dc-dc converter. For the closed-loop control design and stability assessment, a small signal model and its analysis of the proposed network are also presented in brief.

[1]  F. Blaabjerg,et al.  Hybrid-Source Impedance Networks: Layouts and Generalized Cascading Concepts , 2011, IEEE Transactions on Power Electronics.

[2]  Shaojun Xie,et al.  Single-Phase Z-Source Inverter , 2011, IEEE Transactions on Power Electronics.

[3]  F.Z. Peng,et al.  Four quasi-Z-Source inverters , 2008, 2008 IEEE Power Electronics Specialists Conference.

[4]  Kirat Pal Singh,et al.  Design of High Performance MIPS Cryptography Processor Based on T-DES Algorithm , 2015, ArXiv.

[5]  Marian K. Kazimierczuk,et al.  Small-signal modeling of the PWM boost DC-DC converter at boundary-conduction mode by circuit averaging technique , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[6]  Frede Blaabjerg,et al.  Impedance-Source Networks for Electric Power Conversion Part I: A Topological Review , 2015, IEEE Transactions on Power Electronics.

[7]  P.Shailaja Sheeja P.Kumar T-Shaped Z-Source Inverter , 2012 .

[8]  Shaojun Xie,et al.  An Improved $Z$-Source Inverter , 2011, IEEE Transactions on Power Electronics.

[9]  F. Blaabjerg,et al.  Embedded EZ-Source Inverters , 2010, IEEE Transactions on Industry Applications.

[10]  Fang Lin Luo,et al.  Topology analysis of a switched-inductor Z-source inverter , 2010, 2010 5th IEEE Conference on Industrial Electronics and Applications.

[11]  Dariusz Czarkowski,et al.  Energy-conservation approach to modeling PWM DC-DC converters , 1993 .

[12]  Ryszard Strzelecki,et al.  New type T-Source inverter , 2009, 2009 Compatibility and Power Electronics.

[13]  Minh-Khai Nguyen,et al.  Improved Trans-Z-Source Inverter With Continuous Input Current and Boost Inversion Capability , 2013 .

[14]  Frede Blaabjerg,et al.  Y-Source Boost DC/DC Converter for Distributed Generation , 2015, IEEE Transactions on Industrial Electronics.

[15]  Frede Blaabjerg,et al.  Small-Signal Modeling and Comprehensive Analysis of Magnetically Coupled Impedance-Source Converters , 2016, IEEE Transactions on Power Electronics.

[16]  Joel Anderson,et al.  A Class of Quasi-Z-Source Inverters , 2008, 2008 IEEE Industry Applications Society Annual Meeting.

[17]  Fang Zheng Peng,et al.  Single-phase Z-source PWM AC-AC converters , 2005 .

[18]  Frede Blaabjerg,et al.  Tapped-inductor Z-source inverters with enhanced voltage boost inversion abilities , 2010, 2010 IEEE International Conference on Sustainable Energy Technologies (ICSET).

[19]  Frede Blaabjerg,et al.  A Review of Galvanically Isolated Impedance-Source DC–DC Converters , 2016, IEEE Transactions on Power Electronics.

[20]  M.F. Rahman,et al.  A Matrix–$Z$-Source Converter With AC–DC Bidirectional Power Flow for an Integrated Starter Alternator System , 2009, IEEE Transactions on Industry Applications.

[21]  Jaroslaw Guzinski,et al.  Five-Phase EV Drive with Switched-Autotransformer (LCCAt) Inverter , 2014, 2014 IEEE Vehicle Power and Propulsion Conference (VPPC).

[22]  Fang Lin Luo,et al.  Switched Inductor Z-Source Inverter , 2010, IEEE Transactions on Power Electronics.

[23]  Fang Zheng Peng,et al.  New type LCCT-Z-source inverters , 2011, Proceedings of the 2011 14th European Conference on Power Electronics and Applications.

[24]  M. Kazimierczuk Small-Signal Modeling of Open-Loop PWM Z-Source Converter by Circuit-Averaging Technique , 2013, IEEE Transactions on Power Electronics.

[25]  Dmitri Vinnikov,et al.  Quasi-Z-Source-Based Isolated DC/DC Converters for Distributed Power Generation , 2011, IEEE Transactions on Industrial Electronics.

[26]  Fang Zheng Peng Z-source inverter , 2002 .

[27]  Wei Qian,et al.  Trans-Z-Source Inverters , 2010, IEEE Transactions on Power Electronics.

[28]  Frede Blaabjerg,et al.  New Magnetically Coupled Impedance (Z-) Source Networks , 2016, IEEE Transactions on Power Electronics.

[29]  Minh-Khai Nguyen,et al.  TZ-Source Inverters , 2013, IEEE Transactions on Industrial Electronics.

[30]  Slobodan Cuk,et al.  A general unified approach to modelling switching-converter power stages , 1976, 1970 IEEE Power Electronics Specialists Conference.

[31]  Marian K. Kazimierczuk,et al.  Voltage loop of boost PWM DC-DC converters with peak current-mode control , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Frede Blaabjerg,et al.  Γ-Z-Source Inverters , 2013, IEEE Transactions on Power Electronics.

[33]  Fang Zheng Peng,et al.  Distributed Impedance Network (Z-Network) DC–DC Converter , 2010, IEEE Transactions on Power Electronics.

[34]  F. Blaabjerg,et al.  Buck-boost impedance networks , 2007, 2007 European Conference on Power Electronics and Applications.

[35]  Minh-Khai Nguyen,et al.  Switched-Inductor Quasi-Z-Source Inverter , 2011, IEEE Transactions on Power Electronics.

[36]  Shaojun Xie,et al.  Z-Source AC-AC Converters Solving Commutation Problem , 2007, 2007 IEEE Power Electronics Specialists Conference.