Windowed Integral Equation Methods for Problems of Scattering by Defects and Obstacles in Layered Media

This thesis concerns development of efficient high-order boundary integral equation methods for the numerical solution of problems of acoustic and electromagnetic scattering in the presence of planar layered media in two and three spatial dimensions. The interest in such problems arises from application areas that benefit from accurate numerical modeling of the layered media scattering phenomena, such as electronics, near-field optics, plasmonics and photonics as well as communications, radar and remote sensing. A number of efficient algorithms applicable to various problems in these areas are pre- sented in this thesis, including (i) A Sommerfeld integral based high-order integral equation method for problems of scattering by defects in presence of infinite ground and other layered media, (ii) Studies of resonances and near resonances and their impact on the absorptive properties of rough surfaces, and (iii) A novel Window Green Function Method (WGF) for problems of scattering by obstacles and defects in the presence of layered media. The WGF approach makes it possible to completely avoid use of expensive Sommerfeld integrals that are typically utilized in layer-media simulations. In fact, the methods and studies referred in points (i) and (ii) above motivated the development of the markedly more efficient WGF alternative.

[1]  J. Zenneck Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie , 1907 .

[2]  Weiwei Sun,et al.  A Fast Algorithm for the Electromagnetic Scattering from a Large Cavity , 2005, SIAM J. Sci. Comput..

[3]  J. Meixner The Behavior of Electromagnetic Fields at Edges , 2018 .

[4]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[5]  Akash Anand,et al.  Efficient Solution of Three-Dimensional Problems of Acoustic and Electromagnetic Scattering by Open Surfaces , 2011 .

[6]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[7]  Wei Cai,et al.  Algorithmic Issues for Electromagnetic Scattering in Layered Media: Green's Functions, Current Basis, and Fast Solver , 2002, Adv. Comput. Math..

[8]  M. Bleszynski,et al.  AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .

[9]  M. I. Aksun,et al.  Current status of closed-form Green's functions in layered media composed of natural and artificial materials , 2009, 2009 International Conference on Electromagnetics in Advanced Applications.

[10]  M. Saillard,et al.  Scattering of Electromagnetic Waves From Rough Surfaces: A Boundary Integral Method for Low-Grazing Angles , 2008, IEEE Transactions on Antennas and Propagation.

[11]  Daan Huybrechs,et al.  norges teknisk-naturvitenskapelige universitet Asymptotic analysis of numerical steepest descent with path approximations by , 2022 .

[12]  H. Ammari,et al.  An integral equation method for the electromagnetic scattering from cavities , 2000 .

[13]  Oscar P. Bruno,et al.  A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space , 2012, J. Comput. Phys..

[14]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[15]  L. Carin,et al.  Analysis of scattering from very large three-dimensional rough surfaces using MLFMM and ray-based analyses , 2005, IEEE Antennas and Propagation Magazine.

[16]  Jean-Claude Nédélec,et al.  Asymptotics for Helmholtz and Maxwell Solutions in 3-D Open Waveguides , 2012 .

[17]  Y. Yamaguchi,et al.  TE-Plane Wave Scattering from a Dielectric-Loaded Semi-Circular Trough in a Conducting Plane , 1993 .

[18]  Weng Cho Chew,et al.  Efficient Evaluation of Sommerfeld Integrals for Tm Wave Scattering By Buried Objects , 1998 .

[19]  Fuming Ma,et al.  A FINITE ELEMENT METHOD WITH RECTANGULAR PERFECTLY MATCHED LAYERS FOR THE SCATTERING FROM CAVITIES , 2009 .

[20]  G. E. Howard,et al.  A closed-form spatial Green's function for the thick microstrip substrate , 1991 .

[21]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[22]  Allen Taflove,et al.  Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. , 2004, Optics express.

[23]  N. Myung,et al.  Multiple scattering from two dielectric-filled semi-circular channels in a conducting plane: TM case , 2002 .

[24]  O. Ramahi,et al.  Finite-element solution of the problem of scattering from cavities in metallic screens using the surface integral equation as a boundary constraint. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Aihua W. Wood,et al.  Finite element analysis of electromagnetic scattering from a cavity , 2003 .

[26]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[27]  John Anderson Monro,et al.  A Super-Algebraically Convergent, Windowing-Based Approach to the Evaluation of Scattering from Periodic Rough Surfaces , 2008 .

[28]  O. Martin,et al.  Accurate and efficient computation of the Green's tensor for stratified media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Gerhard Kristensson A uniqueness theorem for the Helmholtz' equation: Penetrable media with an infinite interface , 1980 .

[30]  Wei Cai,et al.  Fast calculations of dyadic Green's functions for electromagnetic scattering in a multilayered medium , 2000 .

[31]  G. Nemes Asymptotic Expansions of Integrals , 2004 .

[32]  J. Van Bladel,et al.  Field singularities at metal-dielectric wedges , 1985 .

[33]  G. F. Roach,et al.  A transmission problem for the reduced wave equation in inhomogeneous media with an infinite interface , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[34]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[35]  Aihua Wood,et al.  Analysis of electromagnetic scattering from an overfilled cavity in the ground plane , 2006, J. Comput. Phys..

[36]  Kui Du,et al.  A Second-Order Method for the Electromagnetic Scattering from a Large Cavity , 2008 .

[37]  A. Maue,et al.  Zur Formulierung eines allgemeinen Beugungs-problems durch eine Integralgleichung , 1949 .

[38]  Kui Du,et al.  Two transparent boundary conditions for the electromagnetic scattering from two-dimensional overfilled cavities , 2011, J. Comput. Phys..

[39]  R. Garg,et al.  Microstrip Antenna Design Handbook , 2000 .

[40]  Erich Martensen,et al.  Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für torusartige Berandungen , 1963 .

[41]  O. Bruno,et al.  Electromagnetic power absorption due to bumps and trenches on flat surfaces , 2014 .

[42]  On the derivation of boundary integral equations for scattering by an infinite two-dimensional rough surface , 1998 .

[43]  Chao-Fu Wang,et al.  2D Cavity Modeling Using Method of Moments and Iterative Solvers , 2003 .

[44]  Raj Mittra,et al.  Derivation of closed-form Green's functions for a general microstrip geometry , 1992 .

[45]  Christophe Hazard,et al.  Existence, uniqueness and analyticity properties for electromagnetic scattering in a two‐layered medium , 1998 .

[46]  A. Sommerfeld Über die Ausbreitung der Wellen in der drahtlosen Telegraphie , 1909 .

[47]  Peter Werner,et al.  Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung , 1965 .

[48]  Oscar P. Bruno,et al.  Second‐kind integral solvers for TE and TM problems of diffraction by open arcs , 2012, 1204.3701.

[49]  A. Folkesson Analysis of numerical methods , 2011 .

[50]  L. Greengard,et al.  Accelerating fast multipole methods for the Helmholtz equation at low frequencies , 1998 .

[51]  Rainer Kress,et al.  On the numerical solution of a hypersingular integral equation in scattering theory , 1995 .

[52]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[53]  L. Tuckerman,et al.  On the intensity of the light reflected from or transmitted through a pile of plates. , 1947, Journal of the Optical Society of America.

[54]  M. Hinders,et al.  Dual-series solution to scattering from a semicircular channel in a ground plane , 1991, IEEE Microwave and Guided Wave Letters.

[55]  Oscar P. Bruno,et al.  A generalized Calderón formula for open-arc diffraction problems: theoretical considerations , 2015, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[56]  P. Katehi,et al.  Real axis integration of Sommerfeld integrals with applications to printed circuit antennas , 1983 .

[57]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[58]  O. Ramahi,et al.  Hybrid finite element-boundary integral algorithm to solve the problem of scattering from a finite array of cavities with multilayer stratified dielectric coating. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  A. Tyzhnenko A UNIQUE SOLUTION TO THE 2-D H-SCATTERING PROBLEM FOR A SEMICIRCULAR TROUGH IN A PEC GROUND PLANE , 2005 .

[60]  A. Tyzhnenko Two-Dimensional TE-Plane Wave Scattering by a Dielectric-Loaded Semicircular Trough in a Ground Plane , 2004 .

[61]  Peijun Li,et al.  A two-dimensional Helmhotlz equation solution for the multiple cavity scattering problem , 2013, J. Comput. Phys..

[62]  J. Wait The ancient and modern history of EM ground-wave propagation , 1998 .

[63]  Nilima Nigam,et al.  A boundary integral algorithm for the Laplace Dirichlet-Neumann mixed eigenvalue problem , 2014, J. Comput. Phys..

[64]  Weng Cho Chew,et al.  Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three-dimensional buried objects , 1999, IEEE Trans. Geosci. Remote. Sens..

[65]  Oscar P. Bruno,et al.  Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum - including Wood anomalies , 2014, J. Comput. Phys..

[66]  O. M. R. S. L. R. Pres. XXX. On the light dispersed from fine lines ruled upon reflecting surfaces or transmitted by very narrow slits , 1907 .

[67]  Rainer Kußmaul,et al.  Ein numerisches Verfahren zur Lösung des Neumannschen Außenraumproblems für die Helmholtzsche Schwingungsgleichung , 1969, Computing.

[68]  Oscar P. Bruno,et al.  Regularized integral equations and fast high‐order solvers for sound‐hard acoustic scattering problems , 2012 .

[69]  B. K. Sachdeva,et al.  Scattering by a dielectric-loaded trough in a conducting plane , 1977 .

[70]  S. Safavi-Naeini,et al.  Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[71]  Gabriel Soriano,et al.  Rough surface scattering at low grazing incidence: A dedicated model , 2010, 2010 URSI International Symposium on Electromagnetic Theory.

[72]  Paul A. Martin,et al.  ON THE DERIVATION OF BOUNDARY INTEGRAL EQUATIONS FOR SCATTERING BY AN INFINITE ONE-DIMENSIONAL ROUGH SURFACE , 1997 .

[73]  N. Myung,et al.  TM scattering from hollow and dielectric-filled semielliptic channels with arbitrary eccentricity in a perfectly conducting plane , 1998 .

[74]  R. Kanwal Linear Integral Equations , 1925, Nature.

[75]  Laurent Demanet,et al.  Scattering in Flatland: Efficient Representations via Wave Atoms , 2010, Found. Comput. Math..

[76]  Ismo V. Lindell,et al.  Exact image theory for the Sommerfeld half-space problem, part I: Vertical magnetic dipole , 1984 .

[77]  L. J. Chu,et al.  Diffraction Theory of Electromagnetic Waves , 1939 .

[78]  Nancy J. Nersessian,et al.  The Rise of the Wave Theory of Light: Optical Theory and Experiment in the Early Nineteenth Century , 1991 .

[79]  Carlos Pérez-Arancibia,et al.  High-order integral equation methods for problems of scattering by bumps and cavities on half-planes. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[80]  A. Meier,et al.  On the stability and convergence of the finite section method for integral equation formulations of rough surface scattering , 2001 .

[81]  A. Wood,et al.  TE solutions of an integral equations method for electromagnetic scattering from a 2D cavity , 2003, IEEE Antennas and Wireless Propagation Letters.

[82]  Wei Cai,et al.  A parallel fast algorithm for computing the Helmholtz integral operator in 3-D layered media , 2012, J. Comput. Phys..

[83]  H. Eom,et al.  Analysis of TM scattering from finite rectangular grooves in a conducting plane , 1993 .

[84]  V. Twersky On the Nonspecular Reflection of Electromagnetic Waves , 1951 .

[85]  Oscar P. Bruno,et al.  A high-order integral algorithm for highly singular PDE solutions in Lipschitz domains , 2009, Computing.

[86]  Krzysztof A. Michalski,et al.  Efficient computation of Sommerfeld integral tails – methods and algorithms , 2016 .

[87]  Martin Costabel,et al.  Asymptotics Without Logarithmic Terms for Crack Problems , 2003 .

[88]  Michael E. Taylor,et al.  Partial Differential Equations II: Qualitative Studies of Linear Equations , 1996 .

[89]  J. Mosig,et al.  General integral equation formulation for microstrip antennas and scatterers , 1985 .

[90]  R. Ruppin Electric field enhancement near a surface bump , 1981 .

[91]  Leslie Greengard,et al.  On the efficient representation of the half-space impedance Green’s function for the Helmholtz equation , 2011, 1109.6708.

[92]  Snorre H. Christiansen,et al.  The electric field integral equation on Lipschitz screens: definitions and numerical approximation , 2003, Numerische Mathematik.

[93]  Rainer Kress,et al.  A Nyström method for boundary integral equations in domains with corners , 1990 .

[94]  R. Gilgenbach,et al.  Analysis of radio-frequency absorption and electric and magnetic field enhancements due to surface roughness , 2009 .

[95]  J. Meixner Strenge Theorie der Beugung elektromagnetischer Wellen an der vollkommen leitenden Kreisscheibe , 1948 .

[96]  J. Mosig Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation , 1988 .

[97]  Eldar Akhmetgaliyev,et al.  Fast Numerical Methods for Mixed, Singular Helmholtz Boundary Value Problems and Laplace Eigenvalue Problems - with Applications to Antenna Design, Sloshing, Electromagnetic Scattering and Spectral Geometry , 2016 .

[98]  Ralph E. Kleinman,et al.  Acoustic scattering by penetrable homogeneous objects , 1975 .

[99]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[100]  Gabriel Soriano,et al.  Rigorous Simulations of Microwave Scattering From Finite Conductivity Two-Dimensional Sea Surfaces at Low Grazing Angles , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[101]  R. Leis,et al.  Zur Dirichletschen Randwertaufgabe des Außenraumes der Schwingungsgleichung , 1965 .

[102]  Mark Lyon,et al.  Windowed Green Function Method for Layered-Media Scattering , 2015, SIAM J. Appl. Math..

[103]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[104]  Fernando Reitich,et al.  Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[105]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[106]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[107]  Norbert Heuer,et al.  Natural p-BEM for the electric field integral equation on screens , 2010 .

[108]  L. Brekhovskikh Acoustics of Layered Media II - Point Sources and Bounded Beams, second, updated and enlarged edition , 2000 .

[109]  Scattering from a trough in a ground plane , 1999, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[110]  Woongsup Lee,et al.  Electromagnetic scattering from both finite semi-circular channels and bosses in a conducting plane: TM case , 2012 .

[111]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[112]  H. Eom,et al.  Gaussian beam scattering from a semicircular boss above a conducting plane , 1993 .

[113]  Randy C. Paffenroth,et al.  Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations , 2009, J. Comput. Phys..

[114]  K. Michalski,et al.  The Sommerfeld half-space problem revisited: from radio frequencies and Zenneck waves to visible light and Fano modes , 2016 .