Calculation of gas heating in direct current argon glow discharges

A model is developed for self-consistently calculating the gas temperature in a direct current argon glow discharge, used for analytical spectroscopy. The power input into the argon gas due to elastic (i.e., kinetic energy transfer) collisions of Ar+ ions, and fast Ar atoms, sputtered Cu atoms and electrons with the argon gas atoms is calculated with Monte Carlo models. This power input is used in a heat transfer model to calculate the gas temperature. The amount of power input, the contributions of the various input sources, and the resulting gas temperature are calculated for a wide range of voltages, pressures, and currents, typically applied in analytical spectroscopy. It is found that the temperature can increase significantly at high voltages, pressures, and currents (up to a factor of 3 compared to absolute room temperature).

[1]  D. Graves,et al.  Two-dimensional fluid model of an inductively coupled plasma with comparison to experimental spatial profiles , 1996 .

[2]  G. M. Turner Monte Carlo calculations of gas rarefaction in a magnetron sputtering discharge , 1995 .

[3]  S. Sazhin,et al.  Rarefied gas flows: hydrodynamic versus Monte Carlo modelling , 1997 .

[4]  A. Bogaerts,et al.  Comprehensive description of a Grimm-type glow discharge source used for optical emission spectrometry: A mathematical simulation , 1998 .

[5]  Winters,et al.  Energy transfer from rare gases to surfaces: Collisions with gold and platinum in the range 1-4000 eV. , 1990, Physical review. B, Condensed matter.

[6]  A. Bogaerts,et al.  Description of the thermalization process of the sputtered atoms in a glow discharge using a three‐dimensional Monte Carlo method , 1995 .

[7]  A. Bogaerts,et al.  Two-Dimensional Model of a Direct Current Glow Discharge: Description of the Electrons, Argon Ions, and Fast Argon Atoms , 1996 .

[8]  Gijbels,et al.  Modeling of metastable argon atoms in a direct-current glow discharge. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  S. Kawamoto,et al.  Particle-in-cell plus direct simulation Monte Carlo (PIC-DSMC) approach for self-consistent plasma-gas simulations , 1999 .

[10]  A. Bogaerts,et al.  Role of Ar2+ and Ar2+ ions in a direct current argon glow discharge: A numerical description , 1999 .

[11]  K. Muraoka,et al.  REVIEW ARTICLE: Diagnostics of low-density glow discharge plasmas using Thomson scattering , 1998 .

[12]  A. Bogaerts,et al.  Role of sputtered Cu atoms and ions in a direct current glow discharge: Combined fluid and Monte Carlo model , 1996 .

[13]  A. V. Phelps,et al.  The application of scattering cross sections to ion flux models in discharge sheaths , 1994 .

[14]  Winters,et al.  Energy transfer from noble-gas ions to surfaces: Collisions with carbon, silicon, copper, silver, and gold in the range 100-4000 eV. , 1991, Physical review. B, Condensed matter.

[15]  M. Maeda,et al.  Measurements of electron temperature, electron density, and neutral density in a radio‐frequency inductively coupled plasma , 1996 .

[16]  Stephen M. Rossnagel,et al.  Gas density reduction effects in magnetrons , 1988 .

[17]  A. Bogaerts,et al.  Two-dimensional model of a direct current glow discharge:  description of the argon metastable atoms, sputtered atoms, and ions. , 1996, Analytical chemistry.

[18]  A. Bogaerts,et al.  Monte Carlo simulation of an analytical glow discharge: motion of electrons, ions and fast neutrals in the cathode dark space , 1995 .

[19]  R. K. Marcus Glow discharge spectroscopies , 1993 .

[20]  Renaat Gijbels,et al.  Collisional-radiative model for an argon glow discharge , 1998 .

[21]  L. Butler,et al.  Kinetic temperatures and electron densities in the plasma of a side view Grimm-type glow discharge , 1980 .

[22]  A. Bogaerts,et al.  The role of fast argon ions and atoms in the ionization of argon in a direct-current glow discharge: A mathematical simulation , 1995 .

[23]  W. Morokoff,et al.  Selfconsistent simulation of sputter deposition with the Monte Carlo method , 1994 .

[24]  A. Bogaerts Comprehensive modelling network for dc glow discharges in argon , 1999 .

[25]  A. Bogaerts,et al.  Hybrid Monte Carlo‐fluid model of a direct current glow discharge , 1995 .

[26]  G. Petrov,et al.  Numerical modeling of the constriction of the dc positive column in rare gases , 1999 .

[27]  K. Nanbu,et al.  The analysis of background gas heating in direct current sputtering discharges via particle simulation , 1997 .