Machine Learning Line Bundle Cohomology
暂无分享,去创建一个
Callum R. Brodie | Andrei Constantin | Rehan Deen | Andre Lukas | A. Constantin | R. Deen | A. Lukas
[1] R. Schneider,et al. Line Bundle Cohomologies on CICYs with Picard Number Two , 2019, Fortschritte der Physik.
[2] Fabian Ruehle,et al. Branes with brains: exploring string vacua with deep reinforcement learning , 2019, Journal of High Energy Physics.
[3] George Cybenko,et al. Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..
[4] D. Krefl,et al. Machine Learning of Calabi-Yau Volumes : arXiv , 2017, 1706.03346.
[5] Vishnu Jejjala,et al. Machine learning CICY threefolds , 2018, Physics Letters B.
[6] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[7] C. Lütken,et al. Complete intersection Calabi-Yau manifolds , 1988 .
[8] Yang-Hui He,et al. Monad bundles in heterotic string compactifications , 2008, 0805.2875.
[9] Sven Krippendorf,et al. GANs for generating EFT models , 2018, Physics Letters B.
[10] Heterotic Compactification, An Algorithmic Approach , 2007, hep-th/0702210.
[11] Dmitri Krioukov,et al. Machine learning in the string landscape , 2017, Journal of High Energy Physics.
[12] T. Willmore. Algebraic Geometry , 1973, Nature.
[13] Yang-Hui He,et al. The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning , 2018, 1812.02893.
[14] Lorenz Schlechter,et al. Machine learning line bundle cohomologies of hypersurfaces in toric varieties , 2018, Physics Letters B.
[15] E. Witten,et al. Calabi‐Yau Manifolds: A Bestiary for Physicists , 1992 .
[16] Tristan Hübsck,et al. Calabi-Yau manifolds , 1992 .
[17] A. Constantin,et al. The moduli space of heterotic line bundle models: a case study for the tetra-quadric , 2013, 1311.1941.
[18] A. Constantin. Heterotic string models on smooth Calabi-Yau threefolds , 2018, 1808.09993.
[19] P. Green,et al. Calabi-Yau manifolds as complete intersections in products of complex projective spaces , 1987 .
[20] G. Shiu,et al. Topological data analysis for the string landscape , 2018, Journal of High Energy Physics.
[21] A. Constantin,et al. Formulae for Line Bundle Cohomology on Calabi‐Yau Threefolds , 2018, Fortschritte der Physik.
[22] Callum R. Brodie,et al. Topological Formulae for the Zeroth Cohomology of Line Bundles on Surfaces , 2019 .
[23] Yang-Hui He,et al. Heterotic models from vector bundles on toric Calabi-Yau manifolds , 2009, 0911.0865.
[24] Cohomology of Line Bundles , 2004 .
[25] Yang-Hui He,et al. Exploring positive monad bundles and a new heterotic standard model , 2009, 0911.1569.
[26] A new method for finding vacua in string phenomenology , 2007, hep-th/0703249.
[27] Yang-Hui He,et al. Machine-learning the string landscape , 2017 .
[28] R. Blumenhagen,et al. Cohomology of line bundles: A computational algorithm , 2010, 1003.5217.
[29] Yang-Hui He,et al. Deep-Learning the Landscape , 2017, 1706.02714.
[30] Thomas W. Grimm,et al. GUTs in Type IIB Orientifold Compactifications , 2008, 0811.2936.
[31] Fabian Ruehle. Evolving neural networks with genetic algorithms to study the string landscape , 2017, 1706.07024.
[32] Joe W. Harris,et al. Principles of Algebraic Geometry , 1978 .