Random Walks on Finite Groups

Markov chains on finite sets are used in a great variety of situations to approximate, understand and sample from their limit distribution. A familiar example is provided by card shuffling methods. From this viewpoint, one is interested in the “mixing time” of the chain, that is, the time at which the chain gives a good approximation of the limit distribution. A remarkable phenomenon known as the cut-off phenomenon asserts that this often happens abruptly so that it really makes sense to talk about “the mixing time”. Random walks on finite groups generalize card shuffling models by replacing the symmetric group by other finite groups. One then would like to understand how the structure of a particular class of groups relates to the mixing time of natural random walks on those groups. It turns out that this is an extremely rich problem which is very far to be understood. Techniques from a great variety of different fields — Probability, Algebra, Representation Theory, Functional Analysis, Geometry, Combinatorics — have been used to attack special instances of this problem. This article gives a general overview of this area of research.

[1]  Nicholas T. Varopoulos,et al.  Analysis and Geometry on Groups , 1993 .

[2]  Pierre de la Harpe,et al.  La propriété (T) de Kazhdan pour les groupes localement compacts , 1989 .

[3]  G. Quenell,et al.  Spectral Diameter Estimates for k-Regular Graphs , 1994 .

[4]  W. Woess Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .

[5]  Persi Diaconis,et al.  Applications of non-commutative fourier analysis to probability problems , 1988 .

[6]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[7]  Igor Pak,et al.  Random Walks On Finite Groups With Few Random Generators , 1999 .

[8]  Kenneth S. Brown,et al.  Semigroups, Rings, and Markov Chains , 2000 .

[9]  M. Picardello,et al.  Random walks and discrete potential theory : Cortona 1997 , 1999 .

[10]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[11]  Martin Victor Hildebrand Rates of convergence of some random processes on finite groups , 1990 .

[12]  P. Diaconis,et al.  Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques , 2004, math/0401318.

[13]  P. Diaconis,et al.  SHUFFLING CARDS AND STOPPING-TIMES , 1986 .

[14]  Igor Pak,et al.  Expansion Of Product Replacement Graphs , 2002, SODA '02.

[15]  L. H. Harper Global Methods for Combinatorial Isoperimetric Problems , 2004 .

[16]  Gábor Hetyei,et al.  On the diameter of finite groups , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[17]  P. Diaconis Group representations in probability and statistics , 1988 .

[18]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[19]  P. Matthews A strong uniform time for random transpositions , 1988 .

[20]  Martin Hildebrand A note on various holding probabilities for random lazy random walks on finite groups , 2002 .

[21]  M THEORE,et al.  Moderate Growth and Random Walk on Finite Groups , 1994 .

[22]  Johan Jonasson,et al.  Rates of convergence for lamplighter processes , 1997 .

[23]  P. Diaconis,et al.  Eigen Analysis for Some Examples of the Metropolis Algorithm , 1992 .

[24]  R. Blei How Random Are Random Walks , 2002 .

[25]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.

[26]  Fan Chung Graham,et al.  An Upper Bound on the Diameter of a Graph from Eigenvalues Associated with its Laplacian , 1994, SIAM J. Discret. Math..

[27]  D. E. Littlewood,et al.  Group Representations and Applied Probability , 1967 .

[28]  Igor Pak,et al.  Two Random Walks on Upper Triangular Matrices , 2000 .

[29]  R. E. Ingram Some characters of the symmetric group , 1950 .

[30]  David Gluck,et al.  Characters and Random Walks on Finite Classical Groups , 1997 .

[31]  M. Hildebrand Generating Random Elements in SLn (Fq) by Random Transvections , 1992 .

[32]  I. Good Random motion on a finite Abelian group , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  Giuliana P. Davidoff,et al.  Elementary number theory, group theory, and Ramanujan graphs , 2003 .

[34]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[35]  P. Diaconis,et al.  Strong uniform times and finite random walks , 1987 .

[36]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[37]  Ronald L. Graham,et al.  Asymptotic Analysis of a Random Walk on a Hypercube with Many Dimensions , 1990, Random Struct. Algorithms.

[38]  Lajos Takács,et al.  Random walks on groups , 1982 .

[39]  D. Aldous On the Markov Chain Simulation Method for Uniform Combinatorial Distributions and Simulated Annealing , 1987, Probability in the Engineering and Informational Sciences.

[40]  Louis J. Billera,et al.  RANDOM WALKS AND PLANE ARRANGEMENTS IN THREE DIMENSIONS , 1999 .

[41]  Persi Diaconis,et al.  An Application of Harnack Inequalities to Random Walk on Nilpotent Quotients , 2020 .

[42]  D. Aldous Random walks on finite groups and rapidly mixing markov chains , 1983 .

[43]  Clyde H. SchoolfieldJr. Random Walks on Wreath Products of Groups , 2002 .

[44]  P. Diaconis,et al.  Strong Stationary Times Via a New Form of Duality , 1990 .

[45]  Jack J. Dai Some results concerning the rates of convergence of random walks on finite group , 1998 .

[46]  Alan Williamson,et al.  The Probability of Generating the Symmetric Group , 1978 .

[47]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[48]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[49]  Jack Jie Dai,et al.  Random random walks on the integers mod n , 1997 .

[50]  László Babai,et al.  Small-diameter Cayley Graphs for Finite Simple Groups , 1989, Eur. J. Comb..

[51]  Persi Diaconis,et al.  Groups St Andrews 2001 in Oxford: Random walks on groups: characters and geometry , 2003 .

[52]  B. Hostinský Méthodes générales du calcul des probabilités , 1931 .

[53]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[54]  Carl C. Z. Dou Studies of random walks on groups and random graphs , 1992 .

[55]  David Bruce Wilson,et al.  Mixing Time of the Rudvalis Shuffle , 2002, math/0210469.

[56]  David Bruce Wilsondbwilson Random Random Walks on Zd 2 , 1997 .

[57]  M. Hall The Theory Of Groups , 1959 .

[58]  L. Grove,et al.  Classical Groups and Geometric Algebra , 2001 .

[59]  Rostislav I. Grigorchuk,et al.  On the asymptotic spectrum of random walks on infinite families of graphs , 1997 .

[60]  James Allen Fill,et al.  Analysis of Top To Random Shuffles , 1992, Combinatorics, Probability and Computing.

[61]  P. Diaconis,et al.  Walks on generating sets of Abelian groups , 1996 .

[62]  P. Diaconis,et al.  The cutoff phenomenon in finite Markov chains. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Richard Stong,et al.  Eigenvalues of random walks on groups , 1995 .

[64]  Alexander Lubotzky,et al.  Cayley graphs: eigenvalues, expanders and random walks , 1995 .

[65]  James Allen Fill,et al.  Mixing Times for Markov Chains on Wreath Products and Related Homogeneous Spaces , 2000 .

[66]  Igor Pak,et al.  Random walk on upper triangular matrices mixes rapidly , 2000 .

[67]  Martin Hildebrand,et al.  Enumeration and random random walks on finite groups , 1996 .

[68]  Richard Stong,et al.  Random Walks on the Groups of Upper Triangular Matrices , 1995 .

[69]  Alistair Sinclair,et al.  Algorithms for Random Generation and Counting: A Markov Chain Approach , 1993, Progress in Theoretical Computer Science.

[70]  L. Babai Automorphism groups, isomorphism, reconstruction , 1996 .

[71]  La Harpe,et al.  Topics in Geometric Group Theory , 2000 .

[72]  Sandrine Roussel,et al.  Phénomène de cutoff pour certaines marches aléatoires sur le groupe symétrique , 2000 .

[73]  Elizabeth Wilmer,et al.  COMPARING EIGENVALUE BOUNDS FOR MARKOV CHAINS: WHEN DOES POINCARE BEAT CHEEGER? , 1999 .

[74]  P. Diaconis,et al.  Nash inequalities for finite Markov chains , 1996 .

[75]  Sandrine Roussel Marches aleatoires sur le groupe symetrique , 1999 .

[76]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[77]  Jason Fulman,et al.  Semisimple Orbits of Lie Algebras and Card-Shuffling Measures on Coxeter Groups , 1997, math/9712243.

[78]  E. Thorp Nonrandom Shuffling with Applications to the Game of Faro , 1973 .

[79]  Aner Shalev,et al.  Diameters of finite simple groups: sharp bounds and applications , 2001 .

[80]  Radford M. Neal,et al.  ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .

[81]  Igor Pak,et al.  The product replacement algorithm and Kazhdan’s property (T) , 2000 .

[82]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[83]  Andrew S. Greenhalgh A Model for Random Random-Walks on Finite Groups , 1997, Comb. Probab. Comput..

[84]  Richard Stong,et al.  Eigenvalues of the Natural Random Walk on the Burnside Group $B(3, n)$ , 1995 .

[85]  Martin Hildebrand,et al.  Random walks supported on random points ofZ/nZ , 1994 .

[86]  Jim Pitman,et al.  Riffle shuffles, cycles, and descents , 1995, Comb..

[87]  Rick Durrett,et al.  Shuffling Chromosomes , 2003 .

[88]  Shirin J. Handjani,et al.  Rate of convergence for shuffling cards by transpositions , 1996 .

[89]  Bojan Mohar,et al.  Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.

[90]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[91]  D. D. Kosambi,et al.  The efficiency of randomization by card-shuffling , 1958 .

[92]  Mark Jerrum,et al.  Mathematical Foundations of the Markov Chain Monte Carlo Method , 1998 .

[93]  Andrew Simon Greenhalgh,et al.  Random walks on groups with subgroup invariance properties , 1989 .

[94]  Igor Pak,et al.  On Kazhdan constants and mixing of random walks , 2002 .

[95]  M. Habib Probabilistic methods for algorithmic discrete mathematics , 1998 .

[96]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[97]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[98]  Vadim A. Kaimanovich Expander graphs, random matrices and quantum chaos , 2004 .

[99]  P. Sarnak Some Applications of Modular Forms , 1990 .

[100]  R. Bacher Minimal Eigenvalue of the Coxeter Laplacian for the Symmetrical Group , 1994 .

[101]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[102]  D. Wilson Mixing times of lozenge tiling and card shuffling Markov chains , 2001, math/0102193.

[103]  Persi Diaconis,et al.  MATHEMATICAL DEVELOPMENTS FROM THE ANALYSIS OP RIFFLE SHUFFLING , 2003 .

[104]  Yuval Roichman,et al.  Upper bound on the characters of the symmetric groups , 1996 .

[105]  Yuval Peres,et al.  Evolving sets and mixing , 2003, STOC '03.

[106]  Igor Pak,et al.  Rapidly Mixing Random Walks and Bounds on Characters of the Symmetric Group , 2002 .

[107]  David B. Wilson Random random walks on ℤ2d , 1997 .

[108]  L. Saloff‐Coste RANDOM WALKS ON INFINITE GRAPHS AND GROUPS (Cambridge Tracts in Mathematics 138) , 2001 .

[109]  Wolfgang Woess,et al.  Aperiodische Wahrscheinlichkeitsmaße auf topologischen Gruppen , 1980 .

[110]  L. M. MILNE-THOMSON,et al.  Théorie mathématique du bridge à la portée de tous , 1946, Nature.

[111]  Martin Hildebrand,et al.  Random Lazy Random Walks on Arbitrary Finite Groups , 2001 .

[112]  P. Matthews Mixing rates for a random walk on the cube , 1987 .

[113]  Igor Pak,et al.  RANDOM WALKS ON NILPOTENT GROUPS , 2001 .

[114]  Alex Gamburd,et al.  On the spectral gap for infinite index “congruence” subgroups of SL2(Z) , 2002 .

[115]  Laurent Saloff-Coste,et al.  Probability on Groups : Random Walks and Invariant Diffusions , 2001 .

[116]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[117]  P. Diaconis,et al.  Random walks and hyperplane arrangements , 1998 .

[118]  L. Saloff-Coste,et al.  Precise estimates on the rate at which certain diffusions tend to equilibrium , 1994 .

[119]  P. Diaconis,et al.  Comparison Techniques for Random Walk on Finite Groups , 1993 .

[120]  C. Schoolfield Random Walks on Wreath Products of Groups , 2000, math/0006118.

[121]  D. Gluck Sharper Character Value Estimates for Groups of Lie Type , 1995 .

[122]  Jason Fulman Applications of the Brauer Complex: Card Shuffling, Permutation Statistics, and Dynamical Systems , 2001 .

[123]  李幼升,et al.  Ph , 1989 .

[124]  W. Kendall,et al.  Efficient Markovian couplings: examples and counterexamples , 2000 .

[125]  Peter Matthews Strong stationary times and eigenvalues , 1992 .

[126]  R. Chapman SOME APPLICATIONS OF MODULAR FORMS (Cambridge Tracts in Mathematics 99) , 1992 .

[127]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[128]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[129]  A. Odlyzko,et al.  Random Shuffles and Group Representations , 1985 .

[130]  David Gluck First Hitting Times for Some Random Walks on Finite Groups , 1999 .

[131]  J. Doob Stochastic processes , 1953 .

[132]  F. Chung Discrete isoperimetric inequalities , 1996 .

[133]  P. Diaconis,et al.  Trailing the Dovetail Shuffle to its Lair , 1992 .

[134]  Persi Diaconis,et al.  Random walks on the symmetric group generated by conjugacy classes , 1996 .

[135]  P. Diaconis,et al.  Random walks on trees and matchings , 2002 .

[136]  Andrzej Żuk,et al.  On Property (T) for Discrete Groups , 2002 .