Age related changes in fluidity of rat renal brushborder membrane vesicles.

[1]  V. Kreye,et al.  Lack of soluble carbonic anhydrase in aortic smooth muscle of the rabbit , 1985, Pflügers Archiv.

[2]  R. Chesney,et al.  Development Aspects of Renal β-Amino Acid Transport. V Brush Border Membrane Transport in Nursing Animals—Effect of Age and Diet , 1986, Pediatric Research.

[3]  H. Worman,et al.  The lipid fluidity of rat colonic brush-border membrane vesicles modulates Na+-H+ exchange and osmotic water permeability. , 1986, Biochimica et biophysica acta.

[4]  W. J. Blitterswijk,et al.  Steady-state fluorescence polarization data in membranes. Resolution into physical parameters by an extended Perrin equation for restricted rotation of fluorophores. , 1986 .

[5]  J. Beck Glucose and Sodium Transport in Brush‐Border Membrane Vesicles from Fetal Rabbit Kidney a , 1985, Annals of the New York Academy of Sciences.

[6]  J. Heubi,et al.  Postnatal development of intestinal bile salt transport. Relationship to membrane physico-chemical changes. , 1985, Journal of lipid research.

[7]  R. Boigegrain,et al.  Sensitivity of Na+-coupled D-glucose uptake, Mg2+-ATPase and sucrase to perturbations of the fluidity of brush-border membrane vesicles induced by n-aliphatic alcohols. , 1984, Biochimica et biophysica acta.

[8]  M. Medow,et al.  Renal brush-border-membrane vesicles prepared from newborn rats by free-flow electrophoresis and their proline uptake. , 1983, The Biochemical journal.

[9]  M. Serabian,et al.  L-Proline Transport by Isolated Renal Tubules from Newborn and Adult Rats , 1983, Pediatric Research.

[10]  J. Foreman,et al.  Developmental changes of glycine transport in the dog. , 1982, Biochimica et biophysica acta.

[11]  T. Brasitus,et al.  Functional interactions of lipids and proteins in rat intestinal microvillus membranes. , 1979, Biochemistry.

[12]  B. Blazer-Yost,et al.  Free amino acids in the plasma and urine of dogs from birth to senescence. , 1979, American journal of veterinary research.

[13]  J. T. Velardo,et al.  Histochemical study of ovarian hydroxysteroid dehydrogenase activity during normal pseudopregnancy in the rat , 1979, The Anatomical record.

[14]  A. Levitzki,et al.  Adenylate cyclase activation by the beta-adrenergic receptors as a diffusion-controlled process. , 1979, Biochemistry.

[15]  Y. Barenholz,et al.  Fluidity parameters of lipid regions determined by fluorescence polarization. , 1978, Biochimica et biophysica acta.

[16]  M. Houslay,et al.  Changes in the form of Arrhenius plots of the activity of glucagon-stimulated adenylate cyclase and other hamster liver plasma-membrane enzymes occurring on hibernation. , 1978, The Biochemical journal.

[17]  R. A. Cooper,et al.  Decreased fluidity of red cell membrane lipids in abetalipoproteinemia. , 1977, The Journal of clinical investigation.

[18]  D. Goldmann,et al.  Isolation and characterization of the brush border fraction from newborn rat renal proximal tubule cells. , 1976, Biochimica et biophysica acta.

[19]  D. Papahadjopoulos,et al.  Role of cholesterol in membranes. Effects on phospholipid-protein interactions, membrane permeability and enzymatic activity. , 1973, Biochimica et biophysica acta.

[20]  C. Scriver,et al.  The ontogeny of amino acid transport in rat kidney. II. Kinetics of uptake and effect of anoxia. , 1971, Biochimica et biophysica acta.

[21]  A. Finkelstein,et al.  Effect of Cholesterol on the Water Permeability of Thin Lipid Membranes , 1967, Nature.

[22]  L. Rosenberg,et al.  Maleic acid-induced inhibition of amino acid transport in rat kidney. , 1964, The Biochemical journal.