Biological ice nucleation and ice distribution in cold-hardy ectothermic animals.

For many ectotherms, overwintering survival depends on the avoidance or regulation of ice nucleation and growth within their body fluids. Freeze avoidance via supercooling plays an important role in the cold hardiness of many small species, particularly terrestrial arthropods, that do not survive the freezing of their body fluids. In contrast, mechanisms that limit supercooling and initiate freezing at relatively high temperatures promote survival of the few invertebrates and vertebrates that tolerate freezing. These mechanisms include inoculative freezing, which results from contact with ice in the environment, and various ice nucleating proteins, microbes, and crystalloid compounds. In freeze-tolerant ectotherms, cold hardiness is influenced by complex, seasonally changing interactions among physiological factors, ice nucleators, and the physical microenvironment. Extraorgan sequestration of ice is a major adaptation of freeze tolerance. For most freeze-tolerant species, ice growth is primarily restricted to extracellular compartments; however, intracellular freezing also occurs in some species.

[1]  D. Claussen,et al.  Allometry of cooling, supercooling, and freezing in the freeze-tolerant turtle Chrysemys picta. , 1991, The American journal of physiology.

[2]  J. R. Layne Winter microclimate of goldenrod spherical galls and its effects on the gall inhabitant Eurosta solidaginis (Diptera: Tephritidae) , 1993 .

[3]  A. Devries,et al.  The Role of Antifreeze Glycopeptides and Peptides in the Survival of Cold-water Fishes , 1992 .

[4]  D. Claussen,et al.  Natural freeze tolerance in the terrestrial turtle, Terrapene carolina , 1990 .

[5]  William Block,et al.  Cold tolerance of insects and other arthropods. , 1990 .

[6]  U. Gehrken,et al.  Increased cold hardiness in eggs of Arcynopteryx compacta (Plecoptera) by dehydration , 1987 .

[7]  M. F. Wright,et al.  Cold hardiness and overwintering strategies of hatchlings in an assemblage of northern turtles. , 1995 .

[8]  H. Tsumuki,et al.  An ice-nucleating active fungus isolated from the gut of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae) , 1992 .

[9]  Lee,et al.  Modeling seasonal changes in intracellular freeze-tolerance of fat body cells of the gall fly Eurosta solidaginis (Diptera, Tephritidae) , 1997, The Journal of experimental biology.

[10]  T. N. Hansen,et al.  Nucleators and sites of nucleation in the freeze tolerant larvae of the gallfly Eurosta solidaginis (Fitch) , 1989 .

[11]  R. Lee,et al.  Insect Cold-hardiness and Ice Nucleating Active Microorganisms Including Their Potential Use for Biological Control , 1993 .

[12]  F. Janzen,et al.  Supercooling and freeze tolerance in hatchling painted turtles (Chrysemys picta) , 1989 .

[13]  R. E. Lee,et al.  Isolation of ice-nucleating active bacteria from the freeze-tolerant frog, Rana sylvatica. , 1995, Cryobiology.

[14]  S. Johnston,et al.  Regulation of supercooling and nucleation in a freeze intolerant beetle () , 1990 .

[15]  Jun'ichi Kaneko,et al.  INA bacteria isolated from diamondback moth, Plutella xylostella L. Pupae. Lepidoptera: Yponomeutidae. , 1991 .

[16]  C. Lowe,et al.  Supercooling in reptiles and other vertebrates. , 1971, Comparative biochemistry and physiology. A, Comparative physiology.

[17]  J. R. Layne Crystallization Temperatures of Frogs and Their Individual Organs , 1995 .

[18]  J. P. Costanzo,et al.  Integrated Physiological Responses Promoting Anuran Freeze Tolerance , 2019, Life in the Cold.

[19]  G. R. Ultsch ECOLOGY AND PHYSIOLOGY OF HIBERNATION AND OVERWINTERING AMONG FRESHWATER FISHES, TURTLES, AND SNAKES , 1989 .

[20]  Wharton,et al.  Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi , 1995, The Journal of experimental biology.

[21]  忠雄 吉田,et al.  Erwinia herbicola:コナガPlutella xylostella L.蛹体内から分離した氷核活性細菌 , 1991 .

[22]  K. Storey,et al.  Natural freezing survival by painted turtles Chrysemys picta marginata and C. picta bellii. , 1992, The American journal of physiology.

[23]  J. Baust,et al.  The ontogeny of cold tolerance in the gall fly, Eurosta solidagensis , 1976 .

[24]  R. Lee,et al.  Survival of intracellular freezing, lipid coalescence and osmotic fragility in fat body cells of the freeze-tolerant gall fly Eurosta solidaginis , 1993 .

[25]  K. Storey,et al.  NATURAL FREEZING SURVIVAL IN ANIMALS , 1996 .

[26]  R. Salt Intracellular Freezing in Insects , 1962, Nature.

[27]  R. Lee,et al.  Inoculation triggers freezing at high subzero temperatures in a freeze-tolerant frog (Rana sylvatica) and insect (Eurosta solidaginis) , 1990 .

[28]  Professor Dr. Walter Larcher,et al.  Frost Survival of Plants , 1987, Ecological Studies.

[29]  R. Lee Principles of Insect Low Temperature Tolerance , 1991 .

[30]  R. Lee,et al.  Environmental triggers to cryoprotectant modulation in separate populations of the gall fly, Eurost a solidaginis (Fitch) , 1982 .

[31]  R. Lee,et al.  Isolation of Ice Nucleating Active Bacteria From Insects , 1991 .

[32]  B. Rubinsky,et al.  Cryomicroscopic analysis of freezing in liver of the freeze-tolerant wood frog. , 1992, American Journal of Physiology.

[33]  R. Lee,et al.  Effect of biological ice nucleators on insect supercooling capacity varies with anatomic site of application , 1995 .

[34]  J. P. Costanzo,et al.  Glucose concentration regulates freeze tolerance in the wood frog Rana sylvatica. , 1993, The Journal of experimental biology.

[35]  J. Baust,et al.  Relationship of environmental water content to glycerol accumulation in the freezing tolerant larvae of Eurosta solidaginis (Fitch) , 1986 .

[36]  K. Storey Freeze tolerance in terrestrial frogs , 1984 .

[37]  K. Storey,et al.  Freeze tolerance in animals. , 1988, Physiological reviews.

[38]  R. Lee,et al.  Cold tolerance including rapid cold-hardening and inoculative freezing of Fall migrant monarch butterflies in Ohio. , 1994 .

[39]  R. Lee,et al.  Adaptations of frogs to survive freezing , 1995 .

[40]  Richard E. Lee,et al.  Effect of temperature and duration of exposure on tissue ice formation in the gall fly, Eurosta solidaginis (Diptera, Tephritidae) , 1985 .

[41]  Richard E. Lee,et al.  Biological ice nucleation and its applications. , 1995 .

[42]  J. Irons,et al.  Overwintering of Freshwater Benthic Macroinvertebrates , 1991 .

[43]  R. Lee,et al.  Cold-Hardiness in the Antarctic Tick, Ixodes uriae , 1987, Physiological Zoology.

[44]  K. E. Zachariassen Ice Nucleating Agents in Cold-Hardy Insects , 1982 .

[45]  M. F. Wright,et al.  Freeze tolerance as an overwintering adaptation in cope's grey treefrog (Hyla chrysoscelis) , 1992 .

[46]  R. Lee,et al.  Dynamics of body water during freezing and thawing in a freeze-tolerant frog (Rana sylvatica) , 1992 .

[47]  R. Lee,et al.  Survival mechanisms of vertebrate ectotherms at subfreezing temperatures: applications in cryomedicine , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[48]  D. Swanson,et al.  SUPERCOOLING AND FREEZE INTOLERANCE IN OVERWINTERING JUVENILE SPADEFOOT TOADS (SCAPHIOPUS BOMBIFRONS) , 1995 .

[49]  K. Storey,et al.  Hatchling turtles survive freezing during winter hibernation. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. P. Costanzo,et al.  Physiological responses of freeze-tolerant and -intolerant frogs: clues to evolution of anuran freeze tolerance. , 1993, The American journal of physiology.

[51]  T. Forge,et al.  Effects of water potential and temperature on survival of the nematode Meloidogyne hapla in frozen soil , 1992 .

[52]  B. Rubinsky,et al.  Freeze tolerance in turtles: visual analysis by microscopy and magnetic resonance imaging. , 1994, The American journal of physiology.

[53]  K. Storey,et al.  Natural freeze tolerance in ectothermic vertebrates. , 1992, Annual review of physiology.

[54]  M. F. Wright,et al.  Physiological responses to freezing in the turtle Terrapene carolina , 1993 .

[55]  J. B. Moore,et al.  Influence of soil hydric parameters on the winter cold hardiness of a burrowing beetle, Leptinotarsa decemlineata (Say) , 1997, Journal of Comparative Physiology B.

[56]  B. Rubinsky,et al.  1H magnetic resonance imaging of freezing and thawing in freeze-tolerant frogs. , 1994, The American journal of physiology.

[57]  J. R. Layne External Ice Triggers Freezing in Freeze-Tolerant Frogs at Temperatures above Their Supercooling Point , 1991 .

[58]  R. Andjus Suspended animation in cooled, supercooled and frozen rats , 1955, The Journal of physiology.

[59]  W. Larcher,et al.  Frost Survival of Plants: Responses and Adaptation to Freezing Stress , 1987 .

[60]  G. C. Packard,et al.  The Basis for Cold Tolerance in Hatchling Painted Turtles (Chrysemys picta) , 1995, Physiological Zoology.

[61]  B. Barnes Freeze avoidance in a mammal: body temperatures below 0 degree C in an Arctic hibernator. , 1989, Science.

[62]  K. Miller Cold-hardiness strategies of some adult and immature insects overwintering in interior Alaska , 1982 .

[63]  S. D. Collins,et al.  Ultrastructural effects of lethal freezing on brain, muscle and Malpighian tubules from freeze-tolerant larvae of the gall fly, Eurosta solidaginis. , 1997, Journal of insect physiology.

[64]  R. Salt Survival of Frozen Fat Body Cells in an Insect , 1959, Nature.

[65]  K. E. Zachariassen,et al.  PHYSIOLOGY OF COLD HARDINESS IN EARTHWORMS , 1996 .

[66]  Taylor,et al.  Fat body cells and calcium phosphate spherules induce ice nucleation in the freeze-tolerant larvae of the gall fly Eurosta solidaginis (Diptera, Tephritidae) , 1996, The Journal of experimental biology.

[67]  Comparative ultrastructure of fat body cells of freeze-susceptible and freeze-tolerant Eurosta solidaginis larvae after chemical fixation and high pressure freezing , 1994 .

[68]  P. Wilson,et al.  Recrystallization in a freezing tolerant Antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera; Stenopelmatidae). , 1996, Cryobiology.

[69]  P. Mazur Freezing of living cells: mechanisms and implications. , 1984, The American journal of physiology.

[70]  K. Yeung,et al.  The roles of Ice nucleators in cold tolerant invertebrates , 1995 .

[71]  W. D. Schmid Survival of frogs in low temperature. , 1982, Science.

[72]  K. Storey,et al.  Ice nucleating activity in the blood of the freeze-tolerant frog, Rana sylvatica. , 1990, Cryobiology.

[73]  R. Lee,et al.  Freeze tolerance and the dynamics of ice formation in wood frogs (Rana sylvatica) from southern Ohio , 1987 .

[74]  B. Yum,et al.  Determination of minimal upper paths for reliability analysis of planar flow networks , 1993 .

[75]  C. Knight,et al.  Freeze tolerance adaptations in the centipede, Lithobius forficatus , 1994 .

[76]  M. F. Wright,et al.  Cooling rate influences cryoprotectant distribution and organ dehydration in freezing wood frogs. , 1992, The Journal of experimental zoology.

[77]  R. Lee,et al.  MINI-REVIEW: ICE NUCLEATION IN FREEZE-TOLERANT VERTEBRATES , 1996 .