Display of vector fields using a reaction-diffusion model

Effective visualization of vector fields relies on the ability to control the size and density of the underlying mapping to visual cues used to represent the field. In this paper we introduce the use of a reaction-diffusion model, already well known for its ability to form irregular spatio-temporal patters, to control the size, density, and placement of the vector field representation. We demonstrate that it is possible to encode vector field information (orientation and magnitude) into the parameters governing a reaction-diffusion model to form a spot pattern with the correct orientation, size, and density, creating an effective visualization. To encode direction we texture the spots using a light to dark fading texture. We also show that it is possible to use the reaction-diffusion model to visualize an additional scalar value, such as the uncertainty in the orientation of the vector field. An additional benefit of the reaction-diffusion visualization technique arises from its automatic density distribution. This benefit suggests using the technique to augment other vector visualization techniques. We demonstrate this utility by augmenting a LIC visualization with a reaction-diffusion visualization. Finally, the reaction-diffusion visualization method provides a technique that can be used for streamline and glyph placement.

[1]  Harald Garcke,et al.  A Phase Field Model for Continuous Clustering on Vector Fields , 2001, IEEE Trans. Vis. Comput. Graph..

[2]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[3]  Rüdiger Westermann,et al.  A level-set method for flow visualization , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[4]  P. Fayers,et al.  The Visual Display of Quantitative Information , 1990 .

[5]  William E. Lorensen,et al.  The stream polygon-a technique for 3D vector field visualization , 1991, Proceeding Visualization '91.

[6]  Robert Michael Kirby,et al.  Comparing 2D vector field visualization methods: a user study , 2005, IEEE Transactions on Visualization and Computer Graphics.

[7]  Andrew Witkin,et al.  Reaction-diffusion textures , 1991, SIGGRAPH.

[8]  Peter Chambers,et al.  Visualization of solid reaction-diffusion systems , 1995, IEEE Computer Graphics and Applications.

[9]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[10]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[11]  Jarke J. van Wijk,et al.  Enhanced Spot Noise for Vector Field Visualization , 1995, IEEE Visualization.

[12]  Martin Rumpf,et al.  Anisotropic nonlinear diffusion in flow visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[13]  B. Marx The Visual Display of Quantitative Information , 1985 .

[14]  Gordon L. Kindlmann,et al.  Strategies for Direct Volume Rendering of Diffusion Tensor Fields , 2000, IEEE Trans. Vis. Comput. Graph..

[15]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[16]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[17]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[18]  David N. Kenwright,et al.  A 3-D streamline tracking algorithm using dual stream functions , 1992, Proceedings Visualization '92.

[19]  George Em Karniadakis,et al.  Parallel Scientific Computing in C++ and MPI: C++ Basics , 2003 .

[20]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[21]  Han-Wei Shen,et al.  Hardware Accelerated Interactive Vector Field Visualization: A level of detail approach , 2002, Comput. Graph. Forum.

[22]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[23]  Bob Laramee Feature Extraction and Visualization of Flow Fields , 2002 .

[24]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[25]  Theo van Walsum,et al.  Iconic techniques for feature visualization , 1995, Proceedings Visualization '95.

[26]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[27]  P. Gray,et al.  Sustained oscillations and other exotic patterns of behavior in isothermal reactions , 1985 .

[28]  Robert S. Laramee,et al.  Feature Extraction and Visualisation of Flow Fields , 2002, Eurographics.

[29]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[30]  Alexandru Telea,et al.  Simplified representation of vector fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[31]  Eduard Gröller,et al.  Fast oriented line integral convolution for vector field visualization via the Internet , 1997 .

[32]  Yu. M. Romanovsky,et al.  Chemical Oscillations and Instabilities. Non-linear Chemical Kinetics , 1995 .

[33]  Jeff P. Hultquist,et al.  Constructing stream surfaces in steady 3D vector fields , 1992, Proceedings Visualization '92.

[34]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[35]  David C. Banks,et al.  Multi-frequency noise for LIC , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[36]  Robert Michael Kirby,et al.  Visualizing multivalued data from 2D incompressible flows using concepts from painting , 1999, VIS '99.

[37]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[38]  Ross T. Whitaker,et al.  Interactive deformation and visualization of level set surfaces using graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..