An approximation approach to H∞ control problems for distributed parameter systems

A new approximation approach is presented for H∞ control problems involving distributed parameter systems. Related approximation error bound is provided. Using Frostman's theorem, we approximate a general inner function with a finite Blaschke product and then apply known finite dimensional solution techniques. This simple method can give an approximate solution of various infinite dimensional H∞ control problems with great generality.

[1]  D. Flamm,et al.  Numerical methods for H∞ control of distributed parameter systems , 1993 .

[2]  Hitay Özbay,et al.  Tutorial review H∞ optimal controller design for a class of distributed parameter systems , 1993 .

[3]  A. Tannenbaum,et al.  Optimal sensitivity theory for multivariate distributed plants , 1988 .

[4]  P. Khargonekar,et al.  On the weighted sensitivity minimization problem for delay systems , 1987 .

[5]  Allen Tannenbaum,et al.  On the Four Block Problem, I , 1988 .

[6]  Pramod P. Khargonekar,et al.  Four-block problem: stable plants and rational weights , 1989 .

[7]  Allen Tannenbaum,et al.  Weighted sensitivity minimization for delay systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[8]  Allen Tannenbaum,et al.  Frequency domain methods for the H∞-Optimization of distributed systems , 1993 .

[9]  Allen Tannenbaum,et al.  Controller Design for Unstable Distributed Plants , 1990, 1990 American Control Conference.

[10]  Ciprian Foias,et al.  Commutant lifting techniques for computing optimal H ∞ controllers , 1991 .

[11]  J. L. Lions,et al.  ANALYSIS AND OPTIMIZATION OF SYSTEMS : STATE AND FREQUENCY DOMAIN APPROACHES FOR INFINITE-DIMENSIONAL SYSTEMS , 1993 .

[12]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[13]  Hong Yang,et al.  Optimal mixed sensitivity for SISO-distributed plants , 1994, IEEE Trans. Autom. Control..

[14]  David S. Flamm,et al.  Outer factor ‘absorption’ for H∞ control problems , 1992 .

[15]  Edoardo Mosca,et al.  H∞-Control Theory , 1991 .

[16]  Allen R. Tannenbaum,et al.  Frequency domain analysis and robust control design for an ideal flexible beam , 1991, Autom..

[17]  N. Nikol’skiĭ,et al.  Treatise on the Shift Operator , 1986 .