An energy‐consistent material‐point method for dynamic finite deformation plasticity

Energy consistency for the material-point method (MPM) is examined for thermodynamically consistent hyperelastic-plastic materials. It is shown that MPM can be formulated with implicit, three-field variational, finite element algorithms which dissipate energy and conserve momentum for that class of material models. With a consistent mass matrix the resulting overall numerical method inherits the energy-dissipative and momentum-conserving properties of the mesh solution. Thus, the proposed MPM algorithm satisfies by construction a time-discrete form of the second law of thermodynamics. Properties of the method are illustrated in numerical examples.

[1]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[2]  Deborah Sulsky,et al.  An unconditionally stable, energy–momentum consistent implementation of the material-point method , 2006 .

[3]  Christian Miehe,et al.  Exponential Map Algorithm for Stress Updates in Anisotropic Multiplicative Elastoplasticity for Single Crystals , 1996 .

[4]  Z. Więckowski The material point method in large strain engineering problems , 2004 .

[5]  Geoffrey Ingram Taylor,et al.  The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[7]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[8]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[9]  F. Armero,et al.  An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids , 1996 .

[10]  F. Armero,et al.  Large‐scale modeling of localized dissipative mechanisms in a local continuum: applications to the numerical simulation of strain localization in rate‐dependent inelastic solids , 1999 .

[11]  Ke-Shi Zhang,et al.  Anisotropic damage model under continuum slip crystal plasticity theory for single crystals , 2002 .

[12]  James E. Guilkey,et al.  Implicit time integration for the material point method: Quantitative and algorithmic comparisons with the finite element method , 2003 .

[13]  Howard L. Schreyer,et al.  Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems , 1996 .

[14]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[15]  J. C. Simo,et al.  On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects , 1987 .

[16]  F. Armero,et al.  On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods , 2001 .

[17]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[18]  S. Reese,et al.  A theory of finite viscoelasticity and numerical aspects , 1998 .

[19]  Lallit Anand,et al.  Constitutive Equations and a Time Integration Procedure for Isotropic Hyperelastic-Viscoplastic Solids , 1989 .

[20]  R. Asaro,et al.  Micromechanics of Crystals and Polycrystals , 1983 .

[21]  Mohamed S. Gadala,et al.  Recent trends in ALE formulation and its applications in solid mechanics , 2004 .

[22]  W. N. Liu,et al.  A re-formulation of the exponential algorithm for finite strain plasticity in terms of cauchy stresses , 1999 .

[23]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[24]  H. Xiao,et al.  Hencky’s logarithmic strain and dual stress–strain and strain–stress relations in isotropic finite hyperelasticity , 2003 .

[25]  Mark L. Wilkins,et al.  Impact of cylinders on a rigid boundary , 1973 .

[26]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[27]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[28]  Tod A. Laursen,et al.  On energy consistency of large deformation plasticity models, with application to the design of unconditionally stable time integrators , 2002 .

[29]  Deborah Sulsky,et al.  Mass matrix formulation of the FLIP particle-in-cell method , 1992 .

[30]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[31]  S. Reese,et al.  A material model for rubber-like polymers exhibiting plastic deformation: computational aspects and a comparison with experimental results , 1997 .

[32]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[33]  J. Tinsley Oden,et al.  PENALTY-FINITE ELEMENT METHODS FOR THE ANALYSIS OF STOKESIAN FLOWS* , 1982 .

[34]  E. T. Olsen,et al.  Obtaining error estimates for optimally constrained incompressible finite elements , 1984 .

[35]  J. Hutchinson,et al.  PLASTICITY THEORY , 2008, How to Love Everyone and Almost Get Away with It.

[36]  Paul Steinmann,et al.  On the numerical treatment and analysis of finite deformation ductile single crystal plasticity , 1996 .

[37]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[38]  J. Brackbill,et al.  The material-point method for granular materials , 2000 .

[39]  Deborah Sulsky,et al.  Implicit dynamics in the material-point method , 2004 .

[40]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[41]  M. Ortiz,et al.  A material‐independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics , 1992 .

[42]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[43]  Wing Kam Liu,et al.  Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation , 1979 .

[44]  Robert L. Lee,et al.  The cause and cure (!) of the spurious pressures generated by certain fem solutions of the incompressible Navier‐Stokes equations: Part 2 , 1981 .

[45]  S. Antman Nonlinear problems of elasticity , 1994 .

[46]  J. C. Simo,et al.  Numerical analysis and simulation of plasticity , 1998 .

[47]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[48]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[49]  T. Laursen,et al.  Energy consistent algorithms for dynamic finite deformation plasticity , 2002 .

[50]  F. Armero,et al.  On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics , 2001 .

[51]  Hans Muhlhaus,et al.  A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials , 2003 .

[52]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[53]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[54]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[55]  J. Brackbill,et al.  An implicit particle-in-cell method for granular materials , 2002 .

[56]  Jia Lu,et al.  A general framework for the numerical solution of problems in finite elasto-plasticity , 1998 .

[57]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .