Airborne laser scanning applied to eucalyptus stand inventory at individual tree level

Abstract: The objective of this work was to evaluate the application of airborne laser scanning (ALS) to a large-scale eucalyptus stand inventory by the method of individual trees, as well as to propose a new method to estimate tree diameter as a function of the height obtained from point clouds. The study was carried out in a forest area of 1,681 ha, consisting of eight eucalyptus stands with ages varying from four to seven years. After scanning, tree heights were obtained using the local maxima algorithm, and total wood stock by summing up individual volumes. To determine tree diameters, regressions fit using data measured in the inventory plots were used. The results were compared with the estimates obtained from field sampling. The equation system proposed is adequate to be applied to the tree height data derived from ALS point clouds. The tree individualization approach by local maxima filters is efficient to estimate number of trees and wood stock from ALS data, as long as the results are previously calibrated with field data.

[1]  R. Hill,et al.  Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data , 2003 .

[2]  P. Litkey,et al.  Algorithms and methods of airborne laser-scanning for forest measurements , 2004 .

[3]  Marek K. Jakubowski,et al.  Tradeoffs between lidar pulse density and forest measurement accuracy , 2013 .

[4]  C. Silva,et al.  A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data , 2016 .

[5]  T. J. Dean,et al.  Predicting diameter at breast height from total height and crown length , 2013 .

[6]  Jorge García-Gutiérrez,et al.  Comparison of ALS based models for estimating aboveground biomass in three types of Mediterranean forest , 2016 .

[7]  D. J. Reinert,et al.  Parâmetros da copa e a sua relação com o diâmetro e altura das árvores de eucalipto em diferentes idades , 2012 .

[8]  M. Shiba,et al.  Accuracy of LiDAR-based tree height estimation and crown recognition in a subtropical evergreen broad-leaved forest in Okinawa, Japan , 2015 .

[9]  R. Fournier,et al.  Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data , 2015 .

[10]  Flávio Felipe Kirchner,et al.  LiDAR: princípios e aplicações florestais , 2010 .

[11]  Daniele Felix Zandoná,et al.  Varredura a Laser aerotransportado para estimativa de variáveis dendrométricas , 2008 .

[12]  B. Koch,et al.  Detection of individual tree crowns in airborne lidar data , 2006 .

[13]  Determinação do volume de madeira em povoamento de eucalipto por escâner a laser aerotransportado , 2014 .

[14]  Luciano T. de Oliveira,et al.  Application of LIDAR to forest inventory for tree count in stands of Eucalyptus sp , 2012 .

[15]  Liviu Theodor Ene,et al.  Comparative testing of single-tree detection algorithms under different types of forest , 2011 .

[16]  F. Schumacher Logarithmic expression of timber-tree volume , 1933 .

[17]  Yong Q. Tian,et al.  Estimating Basal Area and Stem Volume for Individual Trees from Lidar Data , 2007 .

[18]  M. Hodgson,et al.  An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs , 2003 .

[19]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[20]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[21]  M. Tomé,et al.  Height–diameter equation for first rotation eucalypt plantations in Portugal , 2002 .

[22]  Juha Hyyppä,et al.  An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning , 2012, Remote. Sens..

[23]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[24]  Luis Marcelo Tavares de Carvalho,et al.  Influência da idade na contagem de árvores de Eucalyptus sp. com dados de lidar , 2014 .

[25]  M. K. D. Reis,et al.  INTERAÇÃO ÁRVORES E VENTOS: ASPECTOS ECOFISIOLÓGICOS E SILVICULTURAIS , 2015 .

[26]  P. Gong,et al.  Detection of individual trees and estimation of tree height using LiDAR data , 2007, Journal of Forest Research.

[27]  Eric Bastos Gorgens,et al.  Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations , 2015 .

[28]  Terje Gobakken,et al.  Effects of Pulse Density on Digital Terrain Models and Canopy Metrics Using Airborne Laser Scanning in a Tropical Rainforest , 2015, Remote. Sens..