State of the Art in Stereoscopic and Autostereoscopic Displays

Underlying principles of stereoscopic direct-view displays, binocular head-mounted displays, and autostereoscopic direct-view displays are explained and some early work as well as the state of the art in those technologies are reviewed. Stereoscopic displays require eyewear and can be categorized based on the multiplexing scheme as: 1) color multiplexed (old technology but there are some recent developments; low-quality due to color reproduction and crosstalk issues; simple and does not require additional electronics hardware); 2) polarization multiplexed (requires polarized light output and polarization-based passive eyewear; high-resolution and high-quality displays available); and 3) time multiplexed (requires faster display hardware and active glasses synchronized with the display; high-resolution commercial products available). Binocular head-mounted displays can readily provide 3-D, virtual images, immersive experience, and more possibilities for interactive displays. However, the bulk of the optics, matching of the left and right ocular images and obtaining a large field of view make the designs quite challenging. Some of the recent developments using unconventional optical relays allow for thin form factors and open up new possibilities. Autostereoscopic displays are very attractive as they do not require any eyewear. There are many possibilities in this category including: two-view (the simplest implementations are with a parallax barrier or a lenticular screen), multiview, head tracked (requires active optics to redirect the rays to a moving viewer), and super multiview (potentially can solve the accommodation-convergence mismatch problem). Earlier 3-D booms did not last long mainly due to the unavailability of enabling technologies and the content. Current developments in the hardware technologies provide a renewed interest in 3-D displays both from the consumers and the display manufacturers, which is evidenced by the recent commercial products and new research results in this field.

[1]  Leonid P. Yaroslavsky,et al.  Three methods that improve the visual quality of colour anaglyphs , 2005 .

[2]  Makoto Okui New integral imaging technique uses projector , 2007 .

[3]  David C. Hemmy,et al.  Three-Dimensional Imaging Techniques , 1990 .

[4]  Luc Renambot,et al.  Emerging from the CAVE: Collaboration in Ultra High Resolution Environments , 2007 .

[5]  J P Rolland,et al.  High-resolution inset head-mounted display. , 1998, Applied optics.

[6]  H. Yamamoto,et al.  Development of 140-inch autostereoscopic display by use of full-color LED panel , 2007, SPIE OPTO.

[7]  H. Urey,et al.  Electromagnetically Actuated FR4 Scanners , 2008, IEEE Photonics Technology Letters.

[8]  Wallen Mphepö,et al.  Liquid crystal panel for high efficiency barrier type autostereoscopic three-dimensional displays. , 2009, Applied optics.

[9]  Warren Robinett,et al.  A Computational Model for the Stereoscopic Optics of a Head-Mounted Display , 1991, Presence: Teleoperators & Virtual Environments.

[10]  James Gao,et al.  High-speed switchable lens enables the development of a volumetric stereoscopic display. , 2009, Optics express.

[11]  Yasuhiro Takaki,et al.  High-Density Directional Display for Generating Natural Three-Dimensional Images , 2006, Proceedings of the IEEE.

[13]  Adrian Travis,et al.  16.2: Backlight for ViewSequential Autostereo 3D , 2010 .

[14]  Armin Schwerdtner,et al.  Dresden 3D display (D4D) , 1998, Electronic Imaging.

[15]  David John Trayner,et al.  Developments in autostereoscopic displays using holographic optical elements , 1997, Electronic Imaging.

[16]  Selviah,et al.  Laser Scanning 3D Display with Dynamic Exit Pupil , 2009 .

[17]  Kuen Lee,et al.  A method of fabricating micro-retarder plates by a laser system , 2008, Electronic Imaging.

[18]  Andrew J. Woods,et al.  Ghosting in anaglyphic stereoscopic images , 2004, IS&T/SPIE Electronic Imaging.

[19]  Chih-Kung Lee,et al.  Fabrication of a large F-number lenticular plate and its use as a small-angle flat-top diffuser in autostereoscopic display screens , 2000, Electronic Imaging.

[20]  Nicolas S. Holliman,et al.  Observer-tracking autostereoscopic 3D display systems , 1997, Electronic Imaging.

[21]  Min Jung Kim,et al.  Review of wire grid polarizer and retarder for stereoscopic display , 2009, Electronic Imaging.

[22]  Alexei A. Goon,et al.  Multifocal planes head-mounted displays. , 2000, Applied optics.

[23]  Chao-Hsu Tsai,et al.  Challenge of 3D LCD displays , 2009, Defense + Commercial Sensing.

[24]  Salvatore Paxia,et al.  Recent advances in the NYU autostereoscopic display , 2001, IS&T/SPIE Electronic Imaging.

[25]  H. Urey,et al.  Laser scanning based autostereoscopic 3D display with pupil tracking , 2009, 2009 IEEE LEOS Annual Meeting Conference Proceedings.

[26]  Hakan Urey,et al.  Microlens-array-based exit-pupil expander for full-color displays. , 2005, Applied optics.

[27]  Matthias Wöpking,et al.  3-D displays: A review of current technologies , 1997 .

[28]  Sadeg M. Faris Novel 3D stereoscopic imaging technology , 1994, Electronic Imaging.

[29]  H. Urey,et al.  Scanning Led Array Based Volumetric Display , 2008, 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video.

[30]  H. Jorke,et al.  Advanced Stereo Projection Using Interference Filters , 2008, 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video.

[31]  Marcel P. Lucassen,et al.  Visual comfort of binocular and 3D displays , 2001, IS&T/SPIE Electronic Imaging.

[32]  Andrew E. Johnson,et al.  Advances in the Dynallax Solid-State Dynamic Parallax Barrier Autostereoscopic Visualization Display System , 2008, IEEE Transactions on Visualization and Computer Graphics.

[33]  Kunio Sakamoto,et al.  Multiview 3D display using parallax barrier combined with polarizer , 2006, SPIE Security + Defence.

[34]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[35]  Toshio Honda,et al.  Cylindrical 3D video display observable from all directions , 2000, Electronic Imaging.

[36]  Toshio Honda,et al.  Hologramlike video images by 45-view stereoscopic display , 1997, Electronic Imaging.

[37]  A. Schwartz Head tracking stereoscopic display , 1986, IEEE Transactions on Electron Devices.

[38]  Thomas A. DeFanti,et al.  Varrier autostereographic display , 2001, IS&T/SPIE Electronic Imaging.

[39]  Dae-Sik Kim,et al.  Time-sequential autostereoscopic OLED display with segmented scanning parallax barrier , 2009, Defense + Commercial Sensing.

[40]  Graham John Woodgate,et al.  A prototype 3D mobile phone equipped with a next-generation autostereoscopic display , 2007, Electronic Imaging.

[41]  Hugo Thienpont,et al.  Projection display for the generation of two orthogonal polarized images using liquid crystal on silicon panels and light emitting diodes. , 2008, Applied optics.

[42]  Jung-Young Son,et al.  Desktop autostereoscopic display with head tracking capability , 2001, IS&T/SPIE Electronic Imaging.

[43]  Bernd Fröhlich,et al.  The Responsive Workbench [virtual work environment] , 1994, IEEE Computer Graphics and Applications.

[44]  Ismo Rakkolainen,et al.  A Survey of 3DTV Displays: Techniques and Technologies , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[45]  Leonid P. Yaroslavsky,et al.  New Methods to Produce High Quality Color Anaglyphs for 3-D Visualization , 2004, ICIAR.

[46]  Fumio Kishino,et al.  Study on a stereoscopic display system employing eye-position tracking for multi-viewers , 1994, Electronic Imaging.

[47]  Youri Meuret,et al.  Design of a compact projection display for the visualization of 3‐D images using polarization sensitive eyeglasses , 2009 .

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  Vincenzo Ferrari,et al.  A 3-D Mixed-Reality System for Stereoscopic Visualization of Medical Dataset , 2009, IEEE Transactions on Biomedical Engineering.

[50]  S. Min,et al.  Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays. , 2003, Optics express.

[51]  S. Ichinose Full-color stereoscopic video pickup and display technique without special glasses , 1990 .

[52]  Kunio Sakamoto,et al.  Parallax barrier 3D reflection display using polarizer slit , 2006, SPIE Optics East.

[53]  T. Dekker,et al.  2D/3D switchable displays , 2006, SPIE OPTO.

[54]  A. Takagi,et al.  Development of a stereo video see-through HMD for AR systems , 2000, Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000).

[55]  W. Marsden I and J , 2012 .

[56]  Yoshinori Shimizu,et al.  Enlargement of viewing area of stereoscopic full-color LED display by use of a parallax barrier. , 2002, Applied optics.

[57]  Makoto Sato,et al.  Cylindrical 3-D video display observable from all directions , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[58]  Cees van Berkel,et al.  Image preparation for 3D LCD , 1999 .

[59]  Ronald Azuma,et al.  Recent Advances in Augmented Reality , 2001, IEEE Computer Graphics and Applications.

[60]  Fumio Kishino,et al.  Proposal for a 3‐D display with accommodative compensation: 3DDAC , 1996 .

[61]  P. Sciortino,et al.  High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids , 2007 .

[62]  T. Sugihara,et al.  32.4: A Lightweight 3‐D HMD with Accommodative Compensation , 1998 .

[63]  I. Sexton,et al.  Stereoscopic and autostereoscopic display systems , 1999, IEEE Signal Process. Mag..

[64]  M C Hutley,et al.  Imaging properties of the Gabor superlens , 1999 .

[65]  Tomohiko Hattori,et al.  Stereoscopic liquid crystal display I (general description) , 1994, Electronic Imaging.

[66]  Nicolas S. Holliman,et al.  New autostereoscopic display system , 1995, Electronic Imaging.

[67]  Cees W. M. Bastiaansen,et al.  P‐165: Use of Lyotropic Liquid Crystals for Patterned Polarizer and Retarder Applications , 2006 .

[68]  Alessandro Rizzi,et al.  Color management and color perception issues in a virtual reality theater , 2008, Electronic Imaging.

[69]  Phil Surman,et al.  Laser‐based multi‐user 3‐D display , 2008 .

[70]  P. Bos,et al.  The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device , 1984 .

[71]  Graham John Woodgate,et al.  Performance of a flat-panel display system convertible between 2D and autostereoscopic 3D modes , 2001, IS&T/SPIE Electronic Imaging.

[72]  Kenji Nakao,et al.  11.5L: Late‐News Paper: Full Resolution Autostereoscopic 3D Display for Mobile Applications , 2009 .

[73]  Qiong-Hua Wang,et al.  Autostereoscopic three-dimensional projector based on two parallax barriers. , 2009, Optics letters.

[74]  Yu‐June Wu,et al.  20.2: Stereoscopic 3D Display Using Patterned Retarder , 2008 .

[75]  R. Barry Johnson,et al.  Advances in lenticular lens arrays for visual display , 2005, SPIE Optics + Photonics.

[76]  John C. Hart,et al.  The CAVE: audio visual experience automatic virtual environment , 1992, CACM.

[77]  A DeFantiThomas,et al.  The CAVE: audio visual experience automatic virtual environment , 1992 .

[78]  J. Rolland,et al.  Head-worn displays: a review , 2006, Journal of Display Technology.

[79]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[80]  Martin G. H. Hiddink,et al.  Switchable lenticular based 2D/3D displays , 2007, Electronic Imaging.

[81]  C. N. Moller,et al.  Flat panel time multiplexed autostereoscopic display using an optical wedge waveguide , 2004 .

[82]  Akira Arimoto,et al.  Wide-viewing-area glassless stereoscopic display using multiple projectors , 1998, Electronic Imaging.

[83]  Jannick P. Rolland,et al.  Video see-through design for merging of real and virtual environments , 1993, Proceedings of IEEE Virtual Reality Annual International Symposium.

[84]  Takahisa Ando,et al.  Step barrier system multiview glassless 3D display , 2004, IS&T/SPIE Electronic Imaging.

[85]  Arnold Simon,et al.  Advanced Stereo Projection Using Interference Filters , 2008, 3DTV-CON 2008.

[86]  W. Rollmann Zwei neue stereoskopische Methoden , 1853 .

[87]  Kuen Lee,et al.  The fabrication of microretarder for in-cell stereoscopic LCD using reactive liquid crystal , 2007, Electronic Imaging.

[88]  Jong Beom Ra,et al.  Image distortion correction for lenticula misalignment in three-dimensional lenticular displays , 2006 .

[89]  Bernd Fröhlich,et al.  The Responsive Workbench: A Virtual Work Environment , 1995, Computer.

[90]  R. Häussler,et al.  Large holographic displays as an alternative to stereoscopic displays , 2008, Electronic Imaging.

[91]  Graham John Woodgate,et al.  Flat-panel autostereoscopic displays: characterization and enhancement , 2000, Electronic Imaging.

[92]  Naohisa Sakamoto,et al.  Multiview image integration system for glassless 3D display , 2005, IS&T/SPIE Electronic Imaging.

[93]  S. Pastoor Human factors of 3DTV: an overview of current research at Heinrich-Hertz-Institut Berlin , 1992 .

[94]  Wing Kai Lee,et al.  European Research into Head Tracked Autostereoscopic Displays , 2008, 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video.

[95]  Sheng Liu,et al.  Time-multiplexed dual-focal plane head-mounted display with a liquid lens. , 2009, Optics letters.

[96]  Eric M. Howlett,et al.  High-resolution inserts in wide-angle head-mounted stereoscopic displays , 1992, Electronic Imaging.

[97]  Philip Victor Harman Autostereoscopic teleconferencing system , 2000, Electronic Imaging.

[98]  Pi‐Chun Yeh,et al.  P‐83: An Improvement of Color Difference between Two Eyes of Stereoscopic Display with Glasses , 2009 .

[99]  Sheng Liu,et al.  A systematic method for designing depth-fused multi-focal plane three-dimensional displays. , 2010, Optics express.

[100]  Nobuyuki Fujisawa,et al.  Anaglyph stereo visualization by the use of a single image and depth information , 2008, J. Vis..

[101]  Robert Earl Patterson,et al.  Human Factors of 3D Displays , 2012, Handbook of Visual Display Technology.

[102]  Zeyu Li,et al.  Camera and projector arrays for immersive 3D video , 2009, IMMERSCOM.

[103]  Hideya Takahashi,et al.  Stereoscopic see-through retinal projection head-mounted display , 2008, Electronic Imaging.

[104]  Alexander Toet,et al.  Visual comfort of binocular and 3D displays , 2004 .