A Family of Eulerian-Lagrangian Localized Adjoint Methods for Multi-dimensional Advection-Reaction Equations

We develop a family of Eulerian?Lagrangian localized adjoint methods for the solution of the initial-boundary value problems for first-order advection-reaction equations on general multi-dimensional domains. Different tracking algorithms, including the Euler and Runge?Kutta algorithms, are used. The derived schemes, which are fully mass conservative, naturally incorporate inflow boundary conditions into their formulations and do not need any artificial outflow boundary conditions. Moreover, they have regularly structured, well-conditioned, symmetric, and positive-definite coefficient matrices, which can be efficiently solved by the conjugate gradient method in an optimal order number of iterations without any preconditioning needed. Numerical results are presented to compare the performance of the ELLAM schemes with many well studied and widely used methods, including the upwind finite difference method, the Galerkin and the Petrov?Galerkin finite element methods with backward-Euler or Crank?Nicolson temporal discretization, the streamline diffusion finite element methods, the monotonic upstream-centered scheme for conservation laws (MUSCL), and the Minmod scheme.

[1]  C. Dawson Godunov-mixed methods for advective flow problems in one space dimension , 1991 .

[2]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[3]  Antonio E. de M Baptista,et al.  Solution of advection-dominated transport by Eulerian-Lagrangian methods using the backwards method of characteristics , 1987 .

[4]  D. W. Pollock Semianalytical Computation of Path Lines for Finite‐Difference Models , 1988 .

[5]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[6]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[7]  T. F. Russell,et al.  Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics , 1984 .

[8]  Joannes J. Westerink,et al.  Consistent higher degree Petrov–Galerkin methods for the solution of the transient convection–diffusion equation , 1989 .

[9]  E. Bresler,et al.  Simultaneous transport of solutes and water under transient unsaturated flow conditions , 1973 .

[10]  N. C. Finley,et al.  SWIFT self-teaching curriculum. Illustrative problems to supplement the user's manual for the Sandia Waste-Isolation Flow and Transport model (SWIFT) , 1981 .

[11]  Hong Wang,et al.  An ELLAM Scheme for Advection-Di usion Equations in Multi-Dimensions , 1996 .

[12]  Hong Wang,et al.  Runge–Kutta characteristic methods for first‐order linear hyperbolic equations , 1997 .

[13]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[14]  Bruce A. Finlayson,et al.  Numerical methods for problems with moving fronts , 1992 .

[15]  S. E. Buckley,et al.  Mechanism of Fluid Displacement in Sands , 1942 .

[16]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[17]  Richard E. Ewing,et al.  An optimal-order estimate for Eulerian-Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems , 1996 .

[18]  J. Bear Hydraulics of Groundwater , 1979 .

[19]  Richard E. Ewing,et al.  Eulerian‐Lagrangian localized adjoint method: The theoretical framework , 1993 .

[20]  Tracy Nishikawa,et al.  A New Total Variation Diminishing Scheme for the Solution of Advective‐Dominant Solute Transport , 1991 .

[21]  Ismael Herrera,et al.  A new numerical approach for the advective-diffusive transport equation , 1989 .

[22]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[23]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[24]  John W. Barrett,et al.  Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems , 1984 .

[25]  Richard E. Ewing,et al.  The approximation of the pressure by a mixed method in the simulation of miscible displacement , 1983 .

[26]  Richard E. Ewing,et al.  Simulation of miscible displacement using mixed methods and a modified method of characteristics , 1983 .

[27]  G. Chavent Mathematical models and finite elements for reservoir simulation , 1986 .

[28]  Richard E. Ewing,et al.  Mixed finite element approximation of phase velocities in compositional reservoir simulation , 1984 .

[29]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[30]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[31]  Michael A. Celia,et al.  An improved cubic Petrov-Galerkin method for simulation of transient advection-diffusion processes in rectangularly decomposable domains , 1991 .

[32]  John L. Wilson,et al.  Efficient and accurate front tracking for two‐dimensional groundwater flow models , 1991 .

[33]  Richard W. Healy,et al.  A finite‐volume Eulerian‐Lagrangian Localized Adjoint Method for solution of the advection‐dispersion equation , 1993 .

[34]  Members Spe-Aime Simulation of Miscible Displacement Using Mixed Methods and a Modified Method of Characteristics , 1983 .

[35]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[36]  D. W. Peaceman,et al.  Numerical Calculation of Multidimensional Miscible Displacement by the Method of Characteristics , 1964 .

[37]  G. Pinder,et al.  A Numerical Technique for Calculating the Transient Position of the Saltwater Front , 1970 .

[38]  Egil Sunde,et al.  Field-Related Mathematical Model To Predict and Reduce Reservoir Souring , 1993 .

[39]  Richard E. Ewing,et al.  Eulerian–Lagrangian localized adjoint methods for reactive transport with biodegradation , 1995 .

[40]  J. W. Biggar,et al.  Simultaneous Solute and Water Transfer for an Unsaturated Soil , 1971 .

[41]  M. Reeves,et al.  Theory and implementation for SWIFT II. The Sandia waste-isolation flow and transport model for fractured media. Release 4. 84 , 1986 .

[42]  G. Richter An Optimal-Order Error Estimate for the Discontinuous Galerkin Method , 1988 .

[43]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[44]  R. Ewing,et al.  Characteristic adaptive subdomain methods for reservoir flow problems , 1990 .

[45]  Richard E. Ewing,et al.  A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media , 1983 .

[46]  Bram van Leer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[47]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[48]  Janusz A. Pudykiewicz,et al.  Some properties and comparative performance of the semi‐Lagrangian method of Robert in the solution of the advection‐diffusion equation , 1984 .

[49]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[50]  W. Finn,et al.  Finite elements incorporating characteristics for one-dimensional diffusion-convection equation , 1980 .

[51]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[52]  Philip John Binning,et al.  A Finite Volume Eulerian‐Lagrangian Localized Adjoint Method for Solution of the Contaminant Transport Equations in Two‐Dimensional Multiphase flow Systems , 1996 .

[53]  Richard E. Ewing,et al.  Mixed Finite Element Method for Miscible Displacement Problems in Porous Media , 1984 .

[54]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[55]  Gert Lube,et al.  Stabilized finite element methods for singularly perturbed parabolic problems , 1995 .

[56]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[57]  William G. Gray,et al.  Eulerian-Lagrangian localized adjoint methods with variable coefficients in multiple dimensions. , 1990 .

[58]  R. E. Ewing,et al.  Timestepping along characteristics for amixed finite-element approximation for compressible flow of contamination from nuclear waste in porous media , 1989 .

[59]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[60]  T. F. Russell,et al.  An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation , 1990 .

[61]  Claes Johnson,et al.  Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .

[62]  Michael A. Celia,et al.  Eulerian-Lagrangian Localized Adjoint Methods for Contaminant Transport Simulations , 1994 .

[63]  P. Smolarkiewicz The Multi-Dimensional Crowley Advection Scheme , 1982 .

[64]  S. P. Neuman,et al.  A Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate space-time grids , 1981 .

[65]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[66]  Hong Wang,et al.  Eulerian-Lagrangian Localized Adjoint Methods for Transport of Nuclear-Waste Contamination in Porous Media , 1994 .

[67]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[68]  Michael A. Celia,et al.  Contaminant transport and biodegradation: 2. Conceptual model and test simulations , 1989 .

[69]  P. Bedient,et al.  Transport of dissolved hydrocarbons influenced by oxygen‐limited biodegradation: 1. Theoretical development , 1986 .

[70]  R. Courant,et al.  On the solution of nonlinear hyperbolic differential equations by finite differences , 1952 .

[71]  D. W. Peaceman Fundamentals of numerical reservoir simulation , 1977 .

[72]  P. Bedient,et al.  Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation , 1986 .

[73]  O. C. Zienkiewicz,et al.  Finite element methods for second order differential equations with significant first derivatives , 1976 .

[74]  R. LeVeque Numerical methods for conservation laws , 1990 .

[75]  Richard E. Ewing,et al.  Eulerian-Lagrangian localized adjoint methods for linear advection or advection-reaction equations and their convergence analysis , 1993 .

[76]  S. P. Neuman,et al.  SATURATED-UNSATURATED SEEPAGE BY FINITE ELEMENTS , 1973 .

[77]  Hong Wang,et al.  Eulerian-Lagrangian localized adjoint methods for systems of nonlinear advective-diffusive-reactive transport equations , 1996 .

[78]  Richard E. Ewing,et al.  Eulerian-Lagrangian Localized Adjoint Methods for a Nonlinear Advection-Diffusion Equation , 1994 .

[79]  R. Ewing,et al.  Characteristics Petrov-Galerkin subdomain methods for two-phase immiscible flow , 1987 .