Photochemische Reaktionen. 86. Mitteilung [1]. Zur Photolyse von Bicyclo[3.3.1]nonan‐2‐on

Photolysis of Bicyclo[3.3.1]nonan-2-one. Disproportionations to the unsaturated aldehydes 2 and 3 or the ketene 4, the secondary processes available to the acyl-alkyl biradical b[X(9) = CH2] formed from bicyclo[3.3.1]nonan-2-one (1) in a primary photochemical process by α-cleavage (Norrish type I cleavage), were studied. If the acyl-alkyl biradical b [X(9) = CH2] has a lifetime sufficient to permit rotation around one or several bonds before H-transfer occurs, considerations about the energetically most favored conformations of b allow to deduce the following preference for intramolecular H-abstraction: at C(9) (f unsaturated aldehyde 2) > at C(3) (1 ketene 4) > at C(8) (i unsaturated aldehyde 3). If H-transfer takes place very quickly, following an energetically favored small conformational change of the acyl-alkyl biradical, one expects H-abstraction at C(9) and/or C(3) to be preferred over that at C(8). These predictions were fully confirmed by the experiments. UV. irradiation of bicyclo[3.3.1]nonan-2-one (1) in n-pentane gave a complex mixture of the unsaturated aldehyde 2 and products of further photochemical reactions of 2:43 and 44, 45 and 46, 49–52, and 54–57 (see below). Photolysis of 1 in methanol, however, yielded 82% of 2 and 1,2% of ester 23, the final product from ketene 4 formed by trapping of a solvent molecule. UV. irradiation of the 9,9-dideuterio-ketone 20 confirmed the intramolecular D-abstraction at C(9) ( unsaturated aldehyde 21) and consequently the H-abstraction at C(9) in the sequence 1 2. That either of the two H-atoms at C(9) in 1 can be abstracted was demonstrated by the photolysis of the C(9)-epimeric 9-acetoxy-bicyclo[3.3.1]nonan-2-ones 24 and 25 in methanol. In both cases the unsaturated aldehyde 26 was formed, which corresponds to abstraction of H—C(9)c(7) and H—C(9)C(3)15, respectively. In separate UV. irradiation experiments it was shown that the products accompanying the unsaturated aldehyde 2 (photolysis of 1 in n-pentane) were formed in the following ways: diene 43 and acetaldehyde (44) from 2 by intramolecular γ-H abstraction followed by Norrish type II reaction; the spiro-alcohols 45 and 46 from 2 by intramolecular γ-H abstraction followed by ring closure to cyclobutanols; the oxetanes 49–52 by cycloaddition (Paterno-Buchi reaction) of acetaldehyde (44) to 3-methylidene-cyclohexene (43); the aliphatic alcohols 54–57 by addition of acetaldehyde (44) to n-pentane, i.e. H-abstraction from the hydrocarbon solvent followed by combination of the radicals thereby formed.

[1]  H. Wolf,et al.  Photochemische Reaktionen. 85. Mitteilung [1]. Zur Photochemie von α, β‐Epoxy‐eucarvon , 1976 .

[2]  C. Ganter,et al.  2‐Oxo‐9C(3)‐hydroxy‐ und 2‐Oxo‐9C(7)‐hydroxy‐bicyclo[3.3.1]nonan , 1975 .

[3]  L. Salem,et al.  Classification of photochemical reactions , 1975 .

[4]  W. Agosta,et al.  Conformational control in the photochemistry of substituted bicyclo[3.2.1]octan-6-ones , 1975 .

[5]  J. Pete,et al.  Photolyse d'α-alcoxycyclanones , 1975 .

[6]  R. Kaptein,et al.  Carbon-13 CIDNP from biradicals in the photolysis of cyclic ketones , 1974 .

[7]  L. Salem Surface crossings and surface touchings in photochemistry , 1974 .

[8]  H. Fischer,et al.  Photochemische Primärreaktionen α‐verzweigter aliphatischer Ketone und Aldehyde in lösung , 1974 .

[9]  B. Trost,et al.  New synthetic reactions. X. Versatile cyclobutanone (spiroannelation) and .gamma.-butyrolactone (lactone annelation) synthesis , 1973 .

[10]  C. Doubleday,et al.  Determination of the average singlet-triplet splitting in biradicals by measurement of the magnetic field dependence of CIDNP [chemically induced dynamic nuclear polarization] , 1973 .

[11]  C. Doubleday,et al.  Chemically induced dynamic nuclear spin polarization derived from biradicals generated by photochemical cleavage of cyclic ketones, and the observation of a solvent effect on signal intensities , 1972 .

[12]  D. Gravel,et al.  Préparation simple et configuration de dérivés des bicyclo[3.3.1]nonanol-2 ones-9 endo et exo. Utilité de la fonction trichloro-2,2,2 éthoxycarbonyle comme groupe protecteur d'aldols , 1972 .

[13]  J. Barltrop,et al.  Organic photochemistry. XIV. Photocycloaddition of alkyl ketones to conjugated dienes , 1972 .

[14]  E. L. Eliel Konformationsanalyse an heterocyclischen Systemen: Neuere Ergebnisse und Anwendungen , 1972 .

[15]  C. Ganter,et al.  Substituierte 9-Oxabicyclo[4.2.1]- und 9-Oxabicyclo[3.3.1]nonane IV. endo, endo-2,5-Dihydroxy-9-oxabicyclo[4.2.1]nonan, endo, endo-, endo, exo- und exo, exo-2,6-Dihydroxy sowie endo, exo-2,7-Dihydroxy-9-oxabicyclo[3.3.1]nonan; Darstellung und Umwandlungsprodukte† , 1972 .

[16]  W. C. Herndon Theory of cycloaddition reactions , 1972 .

[17]  N. Turro,et al.  Molecular photochemistry. L. Molecular photochemistry of alkanones in solution. .alpha.-Cleavage, hydrogen abstraction, cycloaddition, and sensitization reactions , 1972 .

[18]  Lionel Salem,et al.  Die elektronischen Eigenschaften von Diradikalen , 1972 .

[19]  H. Carless,et al.  Selected aspects of photochemistry. I Photochemistry of carbonyl compounds , 1972 .

[20]  A. Padwa,et al.  Photochemical transformations of small-ring heterocyclic compounds. XXXII. Photochemical transformations in the 9-heterobicyclo[3.3.1]nonenone system , 1972 .

[21]  J. Moser,et al.  Photochemical Reactions. Part 67. photochemistry of saturated aliphatic and cyclic β‐keto sulfoxides (CαS)‐ and α‐cleavage – A new case of photostereomutation , 1971 .

[22]  W. Agosta,et al.  Specificity of hydrogen transfer in photolysis of 3- and 4-methylcyclohexanone , 1971 .

[23]  P. Wagner Type II photoelimination and photocyclization of ketones , 1971 .

[24]  N. Turro,et al.  Photoreactivity of n,π* Excited States of Alkyl Ketones , 1970 .

[25]  H. Nozaki,et al.  Photochemistry of bicyclo[3.3.1] nonane-2,9-dione and related compounds , 1970 .

[26]  H. Brown,et al.  Reaction of B-alkyl-9-borabicyclo[3.3.1]nonanes with carbon monoxide in the presence of lithium trimethoxyaluminohydride. A convenient procedure for the conversion of olefins into aldehydes via hydroboration , 1969 .

[27]  C. Ganter,et al.  Photochemische Reaktionen. 50. Mitteilung [1]. Zur Photochemie von gesättigten β‐Ketosulfiden II. Synthese von 6‐Hydroxy‐2‐thia‐7‐oxa‐isotwistan , 1969 .

[28]  C. Ganter,et al.  Photochemische Reaktionen. 44. Mitteilung [1]. Zur Photochemie von gesättigten β-Ketosulfiden , 1968 .

[29]  R. A. Schneider,et al.  Stereospecific Hydrogen Transfer in the Photolysis of Carvonecamphor , 1967 .

[30]  E. Corey,et al.  The Synthesis of Olefins from Carbonyl Compounds and Phosphonic Acid Bisamides , 1966 .

[31]  L. Caglioti The reduction of tosylhydrazones and of acyl tosylhydrazides , 1966 .

[32]  R. A. Schneider,et al.  Photochemical Synthesis and Reactions of Carvonecamphor1 , 1965 .

[33]  M. Fischer,et al.  Mechanismus der Reduktion von Tosylhydrazonen mit komplexen Metallhydriden , 1965 .

[34]  P. Scheiner,et al.  Proximity Effects. XLIII. The Solvolysis of 4-Cyclooctene-1-methyl Brosylate1,2 , 1965 .

[35]  W. Schäfer,et al.  Über die gemeinsame Einwirkung von elementarem Schwefel und gasförmigem Ammoniak auf Ketone, XXXIX. Einwirkung von Schwefel und Ammoniak auf Tridecanon‐(7) und Pentanone‐(2). Thiazoline‐Δ3 aus α‐Mercapto‐oxoverbindungen und Oxoverbindungen in Gegenwart von Ammoniak , 1964 .

[36]  J. Seibl,et al.  Massenspektren organischer Verbindungen. 2. Mitteilung. Cyclohexanone , 1963 .

[37]  N. Yang,et al.  PHOTOCHEMICAL REACTIONS OF KETONES IN SOLUTION , 1958 .

[38]  W. Bailey,et al.  Cyclic Dienes. XVII. 3-Methylenecyclohexene1,2 , 1956 .

[39]  D. Curtin,et al.  Elimination and Replacement Reactions of dl-erythro- and dl-threo-2-Deutero-1,2-diphenylethanol and Derivatives1,2 , 1953 .

[40]  C. D. Hurd,et al.  Raney Nickel Desulfuration , 1951 .