Enhanced Fast-VESTAL for Magnetoencephalography Source Imaging: From Theory to Clinical Application in Epilepsy

A novel magnetoencephalography source imaging approach called Fast Vector-based Spatio-Temporal Analysis (Fast-VESTAL) has been successfully applied in creating source images from evoked and resting-state data from both healthy subjects and individuals with neurological and/or psychiatric disorders, but its reconstructed source images may show false-positive activations, especially under low signal-to-noise ratio conditions. Here, to effectively reduce false-positive artifacts, we introduced an enhanced Fast-VESTAL (eFast-VESTAL) approach that adopts generalized second-order cone programming. We compared the spatiotemporal characteristics of the eFast-VESTAL approach to those of the popular distributed source approaches (e.g., the minimum L2-norm/mixed-norm methods) using computer simulations and auditory experiments. More importantly, we applied eFast-VESTAL to the presurgical evaluation of epilepsy. Our results demonstrated that eFast-VESTAL exhibited a lower dipole localization error and/or a higher correlation coefficient (CC) between the estimated source time series and ground truth under various conditions of source waveforms. Experimentally, eFast-VESTAL displayed more focal activation maps and a higher CC between the raw and predicted sensor data in response to auditory stimulation. Notably, eFast-VESTAL was the most accurate method for noninvasively detecting the epileptic zones determined using more invasive stereo-electroencephalography in the comparison.

[1]  J.C. Mosher,et al.  Recursive MUSIC: A framework for EEG and MEG source localization , 1998, IEEE Transactions on Biomedical Engineering.

[2]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[3]  M. Weisend,et al.  Magnetoencephalographic characterization of sleep spindles in humans. , 1997, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[4]  Anders M. Dale,et al.  Vector-based spatial–temporal minimum L1-norm solution for MEG , 2006, NeuroImage.

[5]  Panagiotis G. Simos,et al.  A comparison of functional MRI and magnetoencephalography for receptive language mapping , 2007, Journal of Neuroscience Methods.

[6]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[7]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[8]  S P Ahlfors,et al.  Magnetoencephalographic Mapping of Interictal Spike Propagation: A Technical and Clinical Report , 2007, American Journal of Neuroradiology.

[9]  Heidi E Kirsch,et al.  Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery , 2015, Epilepsia.

[10]  C. C. Wood APPLICATION OF DIPOLE LOCALIZATION METHODS TO SOURCE IDENTIFICATION OF HUMAN EVOKED POTENTIALS * , 1980, Annals of the New York Academy of Sciences.

[11]  Klaus-Robert Müller,et al.  The LDA beamformer: Optimal estimation of ERP source time series using linear discriminant analysis , 2016, NeuroImage.

[12]  G. A. Miller,et al.  Frontal and superior temporal auditory processing abnormalities in schizophrenia , 2013, NeuroImage: Clinical.

[13]  François Dubeau,et al.  Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy , 2015, Brain Topography.

[14]  Jens Haueisen,et al.  Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations , 2013, NeuroImage.

[15]  M. Scherg,et al.  EEG and MEG Source Analysis of Single and Averaged Interictal Spikes Reveals Intrinsic Epileptogenicity in Focal Cortical Dysplasia , 2004, Epilepsia.

[16]  Stefan Haufe,et al.  Solving the EEG inverse problem based on space–time–frequency structured sparsity constraints , 2015, NeuroImage.

[17]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[18]  Roland R. Lee,et al.  MEG Working Memory N-Back Task Reveals Functional Deficits in Combat-Related Mild Traumatic Brain Injury. , 2019, Cerebral cortex.

[19]  Sheraz Khan,et al.  Contextual Minimum-Norm Estimates (CMNE): A Deep Learning Method for Source Estimation in Neuronal Networks , 2019, ArXiv.

[20]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[21]  Thomas T. Liu,et al.  MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images , 2014, NeuroImage.

[22]  J Gotman,et al.  Reliability of dipole models of epileptic spikes , 1999, Clinical Neurophysiology.

[23]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[24]  Roland R. Lee,et al.  Magnetoencephalography Slow-Wave Detection in Patients with Mild Traumatic Brain Injury and Ongoing Symptoms Correlated with Long-Term Neuropsychological Outcome. , 2015, Journal of neurotrauma.

[25]  M Huang,et al.  Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. , 1998, Electroencephalography and clinical neurophysiology.

[26]  Seppo P. Ahlfors,et al.  Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates , 2006, NeuroImage.

[27]  J. Shaw,et al.  Potential distribution analysis. I. A new technique for the analysis of electrophysiological phenomena. , 1955, Electroencephalography and clinical neurophysiology.

[28]  Andreas Ziehe,et al.  Combining sparsity and rotational invariance in EEG/MEG source reconstruction , 2008, NeuroImage.

[29]  S Taulu,et al.  MEG recordings of DC fields using the signal space separation method (SSS). , 2004, Neurology & clinical neurophysiology : NCN.

[30]  Sylvain Baillet,et al.  Magnetoencephalography for brain electrophysiology and imaging , 2017, Nature Neuroscience.

[31]  J. Gotman,et al.  Dipole Modeling of Epileptic Spikes Can Be Accurate or Misleading , 2005, Epilepsia.

[32]  Emery N. Brown,et al.  A Subspace Pursuit-based Iterative Greedy Hierarchical solution to the neuromagnetic inverse problem , 2013, NeuroImage.

[33]  François Mauguière,et al.  The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy , 2013, Brain : a journal of neurology.

[34]  Alain Rakotomamonjy,et al.  Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms , 2011, Signal Process..

[35]  Bin He,et al.  fMRI–EEG integrated cortical source imaging by use of time-variant spatial constraints , 2008, NeuroImage.

[36]  Polina Golland,et al.  A Distributed Spatio-temporal EEG/MEG Inverse Solver , 2008, MICCAI.

[37]  D. Barth,et al.  Neuromagnetic localization of epileptiform spike activity in the human brain. , 1982, Science.

[38]  Hiroshi Shibasaki,et al.  Second somatosensory area (SII) plays a significant role in selective somatosensory attention. , 2002, Brain research. Cognitive brain research.

[39]  Anders M. Dale,et al.  Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain , 2004, NeuroImage.

[40]  François Dubeau,et al.  Reproducibility of EEG‐MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy , 2018, Human brain mapping.

[41]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[42]  Fabrice Bartolomei,et al.  Localizing value of electrical source imaging: Frontal lobe, malformations of cortical development and negative MRI related epilepsies are the best candidates , 2017, NeuroImage: Clinical.

[43]  Preoperative Magnetoencephalographic Sensory Cortex Mapping , 2013, Stereotactic and Functional Neurosurgery.

[44]  Jeffrey L. Elman,et al.  A novel integrated MEG and EEG analysis method for dipolar sources , 2007, NeuroImage.

[45]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[46]  Giovanni Pellegrino,et al.  Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method , 2018, Human brain mapping.

[47]  Jing Xu,et al.  EEG/MEG source imaging using fMRI informed time‐variant constraints , 2018, Human brain mapping.

[48]  A. Gramfort,et al.  Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods , 2012, Physics in medicine and biology.

[49]  Stephen T. C. Wong,et al.  Magnetoencephalography in partial epilepsy: Clinical yield and localization accuracy , 1997, Annals of neurology.

[50]  V. Jousmäki,et al.  Comprehensive Functional Mapping Scheme for Non-Invasive Primary Sensorimotor Cortex Mapping , 2012, Brain Topography.

[51]  Li Zheng,et al.  EMS-Net: A Deep Learning Method for Autodetecting Epileptic Magnetoencephalography Spikes , 2019, IEEE Transactions on Medical Imaging.

[52]  John S Ebersole,et al.  American Clinical Magnetoencephalography Society Clinical Practice Guideline 1: Recording and Analysis of Spontaneous Cerebral Activity* , 2011, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[53]  S. Vanni,et al.  Foveal attention modulates responses to peripheral stimuli. , 2000, Journal of neurophysiology.

[54]  Katya Scheinberg,et al.  Noname manuscript No. (will be inserted by the editor) Efficient Block-coordinate Descent Algorithms for the Group Lasso , 2022 .

[55]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[56]  C H Ferrier,et al.  Interictal magnetoencephalography and the irritative zone in the electrocorticogram. , 2009, Brain : a journal of neurology.

[57]  Pavitra Krishnaswamy,et al.  Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG , 2017, Proceedings of the National Academy of Sciences.

[58]  J. Ebersole,et al.  Cortical Substrates of Scalp EEG Epileptiform Discharges , 2007, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[59]  Olaf Hauk,et al.  Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics , 2011, NeuroImage.

[60]  K. Matsuura,et al.  Selective minimum-norm solution of the biomagnetic inverse problem , 1995, IEEE Transactions on Biomedical Engineering.

[61]  Hisako Fujiwara,et al.  Comparison of magnetic source estimation to intracranial EEG, resection area, and seizure outcome , 2014, Epilepsia.

[62]  Roland R. Lee,et al.  High-resolution MEG source imaging approach to accurately localize Broca’s area in patients with brain tumor or epilepsy , 2016, Clinical Neurophysiology.

[63]  Jens Haueisen,et al.  The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal MEG/EEG Source Reconstruction , 2016, IEEE Transactions on Medical Imaging.

[64]  R. Hari,et al.  Magnetoencephalography in the study of human somatosensory cortical processing. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  Michael Datko,et al.  Resting State Functional Connectivity MRI among Spectral MEG Current Sources in Children on the Autism Spectrum , 2016, Front. Neurosci..

[66]  T. D. Waberski,et al.  Spatiotemporal Imaging of Electrical Activity Related to Attention to Somatosensory Stimulation , 2002, NeuroImage.

[67]  C. Aine,et al.  Multistart Algorithms for MEG Empirical Data Analysis Reliably Characterize Locations and Time Courses of Multiple Sources , 2000, NeuroImage.

[68]  J. Engel,et al.  Intracerebral recordings: organization of the human epileptogenic region. , 1993, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[69]  P Ferrari,et al.  Functional Activity within Brain Tumors: A Magnetic Source Imaging Study , 2001, Neurosurgery.

[70]  Robert D. Nowak,et al.  Space–time event sparse penalization for magneto-/electroencephalography , 2009, NeuroImage.

[71]  J. Stephen,et al.  Central versus peripheral visual field stimulation results in timing differences in dorsal stream sources as measured with MEG , 2002, Vision Research.

[72]  A. Murro,et al.  Utilization of multichannel magnetoencephalography in the guidance of ablative seizure surgery , 1995 .