A data‐driven stochastic collocation approach for uncertainty quantification in MEMS

This work presents a data-driven stochastic collocation approach to include the effect of uncertain design parameters during complex multi-physics simulation of Micro-ElectroMechanical Systems (MEMS). The proposed framework comprises of two key steps: first, probabilistic characterization of the input uncertain parameters based on available experimental information, and second, propagation of these uncertainties through the predictive model to relevant quantities of interest. The uncertain input parameters are modeled as independent random variables, for which the distributions are estimated based on available experimental observations, using a nonparametric diffusion-mixing-based estimator, Botev (Nonparametric density estimation via diffusion mixing. Technical Report, 2007). The diffusion-based estimator derives from the analogy between the kernel density estimation (KDE) procedure and the heat dissipation equation and constructs density estimates that are smooth and asymptotically consistent. The diffusion model allows for the incorporation of the prior density and leads to an improved density estimate, in comparison with the standard KDE approach, as demonstrated through several numerical examples. Following the characterization step, the uncertainties are propagated to the output variables using the stochastic collocation approach, based on sparse grid interpolation, Smolyak (Soviet Math. Dokl. 1963; 4:240–243). The developed framework is used to study the effect of variations in Young's modulus, induced as a result of variations in manufacturing process parameters or heterogeneous measurements on the performance of a MEMS switch. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Roger Ghanem,et al.  Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach , 2006, CDC.

[2]  Z. Botev Nonparametric Density Estimation via Diffusion Mixing , 2007 .

[3]  Narayana R Aluru,et al.  A Lagrangian approach for electrostatic analysis of deformable conductors , 2002 .

[4]  Dan M. Frangopol,et al.  Multi-objective design optimization of electrostatically actuated microbeam resonators with and without parameter uncertainty , 2007, Reliab. Eng. Syst. Saf..

[5]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[6]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[7]  Nitin Agarwal,et al.  A stochastic Lagrangian approach for geometrical uncertainties in electrostatics , 2007, J. Comput. Phys..

[8]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[9]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[10]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[11]  Nicholas Zabaras,et al.  An Information-Theoretic Approach to Stochastic Materials Modeling , 2007, Computing in Science & Engineering.

[12]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[13]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[14]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[15]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[16]  Baskar Ganapathysubramanian,et al.  A seamless approach towards stochastic modeling: Sparse grid collocation and data driven input models , 2008 .

[17]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[18]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[19]  D. W. Scott,et al.  Biased and Unbiased Cross-Validation in Density Estimation , 1987 .

[20]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[21]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[22]  Nitin Agarwal,et al.  Stochastic modeling of coupled electromechanical interaction for uncertainty quantification in electrostatically actuated MEMS , 2008 .

[23]  S.K. De,et al.  Full-Lagrangian schemes for dynamic analysis of electrostatic MEMS , 2004, Journal of Microelectromechanical Systems.

[24]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[25]  Robert P. W. Duin,et al.  On the Choice of Smoothing Parameters for Parzen Estimators of Probability Density Functions , 1976, IEEE Transactions on Computers.

[26]  J. Marron,et al.  SCALE SPACE VIEW OF CURVE ESTIMATION , 2000 .

[27]  Jacob K. White,et al.  An efficient numerical technique for electrochemical simulation of complicated microelectromechanical structures , 1997 .

[28]  Roger G. Ghanem,et al.  Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[29]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[30]  Dong-il Dan Cho,et al.  The effects of post-deposition processes on polysilicon Young's modulus , 1998 .

[31]  N.R. Aluru,et al.  Stochastic Analysis of Electrostatic MEMS Subjected to Parameter Variations , 2009, Journal of Microelectromechanical Systems.

[32]  Roger G. Ghanem,et al.  On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..

[33]  Nitin Agarwal,et al.  A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties , 2009, J. Comput. Phys..

[34]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[35]  M. C. Jones,et al.  Variable location and scale kernel density estimation , 1994 .

[36]  Ivo Babuška,et al.  SOLVING STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS BASED ON THE EXPERIMENTAL DATA , 2003 .

[37]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..