Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions

Abstract The paper is devoted to the study of the dynamical behavior of the solutions of stochastic FitzHugh–Nagumo lattice equations, driven by fractional Brownian motions, with Hurst parameter greater than 1/2. Under some usual dissipativity conditions, the system considered here features different dynamics from the same one perturbed by Brownian motion. In our case, the random dynamical system has a unique random equilibrium, which constitutes a singleton sets random attractor.

[1]  D. Nualart,et al.  Differential equations driven by fractional Brownian motion , 2002 .

[2]  Jianhua Huang The random attractor of stochastic Fitzhugh-Nagumo equations in an infinite lattice with white noises , 2007 .

[3]  Xiaoying Han Asymptotic behaviors for second order stochastic lattice dynamical systems on Zk in weighted spaces , 2013 .

[4]  L. Arnold Random Dynamical Systems , 2003 .

[5]  Shengfan Zhou,et al.  Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications , 2009 .

[6]  Erik S. Van Vleck,et al.  Spatially Discrete FitzHugh--Nagumo Equations , 2005, SIAM J. Appl. Math..

[7]  I︠U︡lii︠a︡ S. Mishura Stochastic Calculus for Fractional Brownian Motion and Related Processes , 2008 .

[8]  Shengfan Zhou,et al.  Attractors and dimension of dissipative lattice systems , 2006 .

[9]  Björn Schmalfuß,et al.  Ergodicity of the Infinite Dimensional Fractional Brownian Motion , 2011 .

[10]  Kening Lu,et al.  Random dynamical systems for stochastic partial differentialequations driven by a fractional Brownian motion , 2010 .

[11]  Xiaoying Han,et al.  Random attractors for stochastic lattice dynamical systems in weighted spaces , 2011 .

[12]  B. Maslowski,et al.  Random Dynamical Systems and Stationary Solutions of Differential Equations Driven by the Fractional Brownian Motion , 2004 .

[13]  M. Zähle Integration with respect to fractal functions and stochastic calculus. I , 1998 .

[14]  Christopher Jones,et al.  Stability of the travelling wave solution of the FitzHugh-Nagumo system , 1984 .

[15]  I. Chueshov Monotone Random Systems Theory and Applications , 2002 .

[16]  Xiaoying Han Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise , 2011 .

[17]  Tomás Caraballo,et al.  Attractors for stochastic lattice dynamical systems with a multiplicative noise , 2008 .

[18]  Jianhua Sun,et al.  Asymptotic behavior of stochastic discrete complex Ginzburg Landau equations , 2006 .

[19]  Bixiang Wang,et al.  Dynamics of systems on infinite lattices , 2006 .

[20]  Zidong Wang,et al.  Random attractors for partly dissipative stochastic lattice dynamical systems1 , 2008 .

[21]  Peter E. Kloeden,et al.  Discretization of Stationary Solutions of Stochastic Systems Driven by Fractional Brownian Motion , 2009 .

[22]  Peter W. Bates,et al.  Attractors for Lattice Dynamical Systems , 2001, Int. J. Bifurc. Chaos.

[23]  Anhui Gu,et al.  Random attractors of Stochastic Lattice Dynamical Systems Driven by fractional Brownian Motions , 2013, Int. J. Bifurc. Chaos.

[24]  Shengfan Zhou Attractors for Second Order Lattice Dynamical Systems , 2002 .

[25]  A. S. ÜstünelÉcole Stochastic Analysis of the Fractional Brownian Motion , 1996 .

[26]  Daoyi Xu,et al.  Random attractors for second-order stochastic lattice dynamical systems☆ , 2010 .

[27]  P. Bates,et al.  ATTRACTORS FOR STOCHASTIC LATTICE DYNAMICAL SYSTEMS , 2006 .

[28]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[29]  Shengfan Zhou,et al.  Attractors and approximations for lattice dynamical systems , 2004 .

[30]  RANDOM ATTRACTORS FOR SECOND ORDER STOCHASTIC LATTICE DYNAMICAL SYSTEMS WITH MULTIPLICATIVE NOISE IN WEIGHTED SPACES , 2012 .

[31]  Hans Crauel,et al.  Random attractors , 1997 .

[32]  Jianhua Sun,et al.  Dynamical behavior for stochastic lattice systems , 2006 .

[33]  F. Viens,et al.  Stochastic evolution equations with fractional Brownian motion , 2003 .