Plasmonics for microwave photonics in the THz range

THz frequencies offer enormous amounts of bandwidth, which could solve the current speed bottleneck for next-generation wireless communications. Recent reports show sub-THz links offering capacities of hundreds of Gbit/s, finally approaching those of state-of-the-art optical transmission channels. Non-etheless, generation, transport, detection and processing of signals in the THz range is far from being a trivial task. Even though the recent evolution of integrated technology is starting to indicate that chip-scale THz technology could gradually close the so-called “THz gap,” much work still needs to be done to enable functional systems, in particular in terms of efficiency. Photonics can be of help, thanks to its extremely low loss and broad bandwidth. Yet, a particularly critical aspect hindering the deployment of THz technology is that state-of-the-art photonics devices generally do not offer sufficient electro-optical bandwidth to process THz signals. Plasmonics, by focusing electromagnetic surface waves at sub-wavelength scales, can play a key role in this quest, as it finally enables the realization of electro-optical devices such as modulators and detectors displaying sufficient compactness and speeds to reach the THz range. This paper overviews recent achievements on plasmonic-based modulators displaying characteristics of speed, efficiency and linearity that enable high-performance access to this much desired frequency range.

[1]  J. Leuthold,et al.  216 GBd Plasmonic Ferroelectric Modulator Monolithically Integrated on Silicon Nitride , 2022, 2022 European Conference on Optical Communication (ECOC).

[2]  M. Burla,et al.  Plasmonics in Future Radio Communications: Potential and Challenges , 2022, 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC).

[3]  Marcos Emir Moreno Nolasco,et al.  First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way , 2022, The Astrophysical Journal Letters.

[4]  M. Burla,et al.  Transparent Optical-THz-Optical Link at 240/192 Gbit/s Over 5/115 m Enabled by Plasmonics , 2022, Journal of Lightwave Technology.

[5]  J. Leuthold,et al.  180 GBd Electronic-Plasmonic IC Transmitter , 2022, 2022 Optical Fiber Communications Conference and Exhibition (OFC).

[6]  J. Leuthold,et al.  Enhanced Stability of Resonant Racetrack Plasmonic-Organic-Hybrid Modulators , 2022, 2022 Optical Fiber Communications Conference and Exhibition (OFC).

[7]  J. Leuthold,et al.  Plasmonic Racetrack Modulator Transmitting 220 Gbit/s OOK and 408 Gbit/s 8PAM , 2021, 2021 European Conference on Optical Communication (ECOC).

[8]  Juerg Leuthold,et al.  Transparent Optical-THz-Optical Link Transmission over 5/115 m at 240/190 Gbit/s Enabled by Plasmonics , 2021, 2021 Optical Fiber Communications Conference and Exhibition (OFC).

[9]  J. Leuthold,et al.  100 Gbit/s NRZ Data Modulation in Plasmonic Racetrack Modulators on the Silicon Photonic Platform , 2020, 2020 European Conference on Optical Communications (ECOC).

[10]  Juerg Leuthold,et al.  A monolithic bipolar CMOS electronic–plasmonic high-speed transmitter , 2020, Nature Electronics.

[11]  M. Burla,et al.  300 GHz Plasmonic Mixer , 2019, 2019 International Topical Meeting on Microwave Photonics (MWP).

[12]  Ning Wang,et al.  Room-temperature heterodyne terahertz detection with quantum-level sensitivity , 2019, Nature Astronomy.

[13]  Juerg Leuthold,et al.  120 GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178 mV. , 2019, Optics express.

[14]  Juerg Leuthold,et al.  Plasmonic IQ modulators with attojoule per bit electrical energy consumption , 2019, Nature Communications.

[15]  Q. Abbasi,et al.  State-of-the-art in terahertz sensing for food and water security – A comprehensive review , 2019, Trends in Food Science & Technology.

[16]  Juerg Leuthold,et al.  Ultra-Compact Terabit Plasmonic Modulator Array , 2019, Journal of Lightwave Technology.

[17]  José Capmany,et al.  Integrated microwave photonics , 2019, Nature Photonics.

[18]  J. Leuthold,et al.  Plasmonic Ferroelectric Modulators , 2019, Journal of Lightwave Technology.

[19]  Thomas Zwick,et al.  Wireless THz link with optoelectronic transmitter and receiver , 2019, Optica.

[20]  Hermann Massler,et al.  500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics , 2018, APL Photonics.

[21]  Thomas Zwick,et al.  THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator , 2018, Nature Photonics.

[22]  Tadao Nagatsuma,et al.  Terahertz integrated electronic and hybrid electronic–photonic systems , 2018, Nature Electronics.

[23]  Juerg Leuthold,et al.  Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon , 2018, Nature Materials.

[24]  T. Watanabe,et al.  Microwave plasmonic mixer in a transparent fibre-wireless link , 2018, Nature Photonics.

[25]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[26]  Xinying Li,et al.  Tutorial: Broadband fiber-wireless integration for 5G+ communication , 2018, APL Photonics.

[27]  Andrew J. Mercante,et al.  Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. , 2018, Optics express.

[28]  J. Leuthold,et al.  100 GBd Plasmonic IQ Modulator , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[29]  Francesco Da Ros,et al.  100s Gigabit/s THz Communication , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[30]  Anthony L. Lentine,et al.  Hybrid Silicon Photonic – Lithium Niobate Electro-Optic Mach-Zehnder Modulator Beyond 100 GHz , 2018 .

[31]  V. Shalaev,et al.  1 Supplementary Information : Low loss Plasmon-assisted electro-optic modulator , 2018 .

[32]  Amit Singh,et al.  A fully integrated scalable W-band phased-array module with integrated antennas, self-alignment and self-test , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[33]  J. Leuthold,et al.  High-speed plasmonic modulator in a single metal layer , 2017, Science.

[34]  Juerg Leuthold,et al.  Harnessing nonlinearities near material absorption resonances for reducing losses in plasmonic modulators , 2017 .

[35]  Edward I. Ackerman,et al.  Inherently broadband linearized modulator for high-SFDR, low-NF microwave photonic links , 2016, 2016 IEEE International Topical Meeting on Microwave Photonics (MWP).

[36]  Jeff Hecht,et al.  The bandwidth bottleneck that is throttling the Internet , 2016, Nature.

[37]  A. F. Tillack,et al.  Optimizing Plasmonic Modulators for In-Device Nonlinearities of up to 275 pm/V , 2016 .

[38]  David Hillerkuss,et al.  Plasmonic Organic Hybrid Modulators—Scaling Highest Speed Photonics to the Microscale , 2016, Proceedings of the IEEE.

[39]  Cyril C. Renaud,et al.  Advances in terahertz communications accelerated by photonics , 2016, Nature Photonics.

[40]  Ruimin Xu,et al.  Structure–function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores , 2016 .

[41]  David Hillerkuss,et al.  Optical interconnect with densely integrated plasmonic modulator and germanium photodetector arrays , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[42]  D. Hillerkuss,et al.  108 Gbit/s Plasmonic Mach–Zehnder Modulator with > 70-GHz Electrical Bandwidth , 2016, Journal of Lightwave Technology.

[43]  D Hillerkuss,et al.  High speed plasmonic modulator array enabling dense optical interconnect solutions. , 2015, Optics express.

[44]  David Hillerkuss,et al.  Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna , 2015, Nano letters.

[45]  D. Hillerkuss,et al.  Ultra-compact plasmonic IQ-modulator , 2015, 2015 European Conference on Optical Communication (ECOC).

[46]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[47]  Cyril C. Renaud,et al.  TeraHertz Photonics for Wireless Communications , 2015, Journal of Lightwave Technology.

[48]  Ramin Khayatzadeh,et al.  Impact of Phase Noise in 60-GHz Radio-Over-Fiber Communication System Based on Passively Mode-Locked Laser , 2014, Journal of Lightwave Technology.

[49]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[50]  Marcin Kowalski,et al.  THz Screening for Civil and Military Security , 2014 .

[51]  Daniel M. Mittleman,et al.  Frontiers in terahertz sources and plasmonics , 2013, Nature Photonics.

[52]  Ioannis Tomkos,et al.  Plasmonic communications : light on a wire , 2013 .

[53]  Romain Quidant,et al.  Performance of electro-optical plasmonic ring resonators at telecom wavelengths. , 2012, Optics express.

[54]  D Hillerkuss,et al.  42.7 Gbit/s electro-optic modulator in silicon technology. , 2011, Optics express.

[55]  A. Yasuda,et al.  Terahertz imaging applied to cancer diagnosis , 2010, Physics in medicine and biology.

[56]  Wolfgang Freude,et al.  Surface plasmon polariton absorption modulator. , 2011, Optics express.

[57]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[58]  Harry A Atwater,et al.  PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. , 2009, Nano letters.

[59]  José Capmany,et al.  Microwave photonics combines two worlds , 2007 .

[60]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[61]  Charles Howard Cox,et al.  Analog Optical Links: Theory and Practice , 2006 .

[62]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[63]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[64]  J. Schildkraut Long-range surface plasmon electrooptic modulator. , 1988, Applied optics.

[65]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.