Coherent spinor dynamics in a spin-1 Bose condensate

Collisions in a thermal gas are perceived as random or incoherent as a consequence of the large numbers of initial and final quantum states accessible to the system. In a quantum gas, for example, a Bose–Einstein condensate or a degenerate Fermi gas, the phase space accessible to low-energy collisions is so restricted that collisions become coherent and reversible. Here, we report the observation of coherent spin-changing collisions in a gas of spin-1 bosons. Starting with condensates occupying two spin states, a condensate in the third spin state is coherently and reversibly created by atomic collisions. The observed dynamics are analogous to Josephson oscillations in weakly connected superconductors and represent a type of matter–wave four-wave mixing. The spin-dependent scattering length is determined from these oscillations to be −1.45(32) bohr. Finally, we demonstrate coherent control of the evolution of the system by applying differential phase shifts to the spin states using magnetic fields.

[1]  A. Smerzi,et al.  Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates , 1997, cond-mat/9706221.

[2]  E. Hagley,et al.  Four-wave mixing with matter waves , 1999, Nature.

[3]  Javanainen Oscillatory exchange of atoms between traps containing Bose condensates. , 1986, Physical review letters.

[4]  Tetsuo Ohmi,et al.  Bose-Einstein Condensation with Internal Degrees of Freedom in Alkali Atom Gases , 1998 .

[5]  Tin-Lun Ho Spinor Bose Condensates in Optical Traps , 1998 .

[6]  C. Wieman,et al.  Coherence, Correlations, and Collisions: What One Learns about Bose-Einstein Condensates from Their Decay , 1997 .

[7]  Ueda,et al.  Exact eigenstates and magnetic response of spin-1 and spin-2 bose-einstein condensates , 2000, Physical review letters.

[8]  Immanuel Bloch,et al.  Coherent collisional spin dynamics in optical lattices. , 2005, Physical review letters.

[9]  J J Arlt,et al.  Dynamics of F=2 spinor Bose-Einstein condensates. , 2003, Physical review letters.

[10]  Cornell,et al.  Bose-Einstein Condensation in a Dilute Gas: Measurement of Energy and Ground-State Occupation. , 1996, Physical review letters.

[11]  Li You,et al.  Mean field ground state of a spin-1 condensate in a magnetic field , 2003 .

[12]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[13]  C. Wieman,et al.  Measurements of Relative Phase in Two-Component Bose-Einstein Condensates [Phys. Rev. Lett. 81, 1543 (1998)] , 1998 .

[14]  Markus Greiner,et al.  Emergence of a molecular Bose–Einstein condensate from a Fermi gas , 2003, Nature.

[15]  Immanuel Bloch,et al.  Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. , 2002 .

[16]  R. Packard,et al.  Superfluid 3 He Josephson weak links , 2002 .

[17]  C. K. Law,et al.  Quantum Spins Mixing in Spinor Bose-Einstein Condensates , 1998 .

[18]  S. Raghavan,et al.  Manipulating spinor condensates with magnetic fields: Stochastization, metastability, and dynamical spin localization , 2000 .

[19]  S. Shapiro JOSEPHSON CURRENTS IN SUPERCONDUCTING TUNNELING: THE EFFECT OF MICROWAVES AND OTHER OBSERVATIONS , 1963 .

[20]  W. Ketterle,et al.  Spin domains in ground-state Bose–Einstein condensates , 1998, Nature.

[21]  Dalibard,et al.  Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.

[22]  M D Barrett,et al.  Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates. , 2003, Physical review letters.

[23]  M. Trippenbach,et al.  Four-wave mixing in Bose-Einstein condensate systems with multiple spin states , 2004, cond-mat/0404499.

[24]  A. Barone,et al.  Physics and Applications of the Josephson Effect , 1982 .

[25]  T L Gustavson,et al.  Sodium Bose-Einstein condensates in the F = 2 state in a large-volume optical trap. , 2003, Physical review letters.

[26]  C. E. Wieman,et al.  Watching a Superfluid Untwist Itself: Recurrence of Rabi Oscillations in a Bose-Einstein Condensate , 1999 .

[27]  Quantum entanglement in spinor Bose-Einstein condensates , 2001, quant-ph/0107055.

[28]  J. R. Ensher,et al.  Dynamics of component separation in a binary mixture of Bose-Einstein condensates , 1998 .

[29]  D Kielpinski,et al.  Coreless vortex formation in a spinor Bose-Einstein condensate. , 2003, Physical review letters.

[30]  Srikanth Raghavan,et al.  SPIN-MIXING DYNAMICS OF A SPINOR BOSE-EINSTEIN CONDENSATE , 1999 .

[31]  C. Greene,et al.  Multichannel Cold Collisions: Simple Dependences on Energy and Magnetic Field , 1998 .

[32]  M. Kasevich,et al.  Macroscopic quantum interference from atomic tunnel arrays , 1998, Science.

[33]  A. Leggett,et al.  A theoretical description of the new phases of liquid He-3 , 1975 .

[34]  W. Ketterle,et al.  Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.

[35]  F Minardi,et al.  Josephson Junction Arrays with Bose-Einstein Condensates , 2001, Science.

[36]  W. Ketterle,et al.  Observation of Interference Between Two Bose Condensates , 1997, Science.

[37]  P. Nozieres,et al.  Particle vs. pair condensation in attractive Bose liquids , 1982 .

[38]  J. Wheatley Experimental properties of superfluid He-3 , 1975 .

[39]  W. Ketterle,et al.  Observation of Metastable States in Spinor Bose-Einstein Condensates , 1999 .

[40]  Dimas Rodrigues Romano,et al.  Population and phase dynamics of F=1 spinor condensates in an external magnetic field , 2004, cond-mat/0408069.

[41]  Takuya Hirano,et al.  Magnetic field dependence of the dynamics of ^8^7Rb spin-2 Bose-Einstein condensates (6 pages) , 2004 .

[42]  M D Barrett,et al.  All-optical formation of an atomic Bose-Einstein condensate. , 2001, Physical review letters.

[43]  Pierre Meystre,et al.  QUANTUM THEORY OF ATOMIC FOUR-WAVE MIXING IN BOSE-EINSTEIN CONDENSATES , 1999 .

[44]  S. Kokkelmans,et al.  Interisotope determination of ultracold rubidium interactions from three high-precision experiments. , 2001, Physical review letters.

[45]  Carl E. Wieman,et al.  Atom–molecule coherence in a Bose–Einstein condensate , 2002, Nature.