NH3 inhibits mercury oxidation over low-temperature MnOx/TiO2 SCR catalyst

[1]  Xin Guo,et al.  Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres from fly ash. Part 4. Performance of sorbent injection in an entrained flow reactor system , 2018 .

[2]  Jing Ren,et al.  Synergistic Hematite‐Fullerene Electron‐Extracting Layers for Improved Efficiency and Stability in Perovskite Solar Cells , 2018 .

[3]  Ying Li,et al.  Atomic layer deposited TiO2 ultrathin layer on Ag_ZnO nanorods for stable and efficient photocatalytic degradation of RhB , 2018, Advanced Composites and Hybrid Materials.

[4]  I. Ferguson,et al.  Metal oxides for thermoelectric power generation and beyond , 2018, Advanced Composites and Hybrid Materials.

[5]  Weilin Zhang,et al.  Coexistence of enhanced Hg0 oxidation and induced Hg2+ reduction on CuO/TiO2 catalyst in the presence of NO and NH3 , 2017 .

[6]  Zhanhu Guo,et al.  Crystal Structure Modification Enhanced FeNb11O29 Anodes for Lithium‐Ion Batteries , 2017 .

[7]  Evan K. Wujcik,et al.  Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites , 2017 .

[8]  Kai Sun,et al.  Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions , 2017 .

[9]  Jianfeng Pan,et al.  Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation , 2017 .

[10]  Xiangfang Peng,et al.  Magnetic Nanocarbon Adsorbents with Enhanced Hexavalent Chromium Removal: Morphology Dependence of Fibrillar vs Particulate Structures , 2017 .

[11]  W. Liu,et al.  Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review. , 2017, Environmental science & technology.

[12]  Lei Zhang,et al.  Experimental and simulation-based understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants , 2017 .

[13]  Yongchun Zhao,et al.  Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices , 2017 .

[14]  Junying Zhang,et al.  Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2. , 2017, Journal of environmental sciences.

[15]  P. Sun,et al.  Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma , 2017 .

[16]  Lei Zhu,et al.  Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere , 2017 .

[17]  Jiangfeng Qin,et al.  Evolution of the Proto-Tethys in the Baoshan block along the East Gondwana margin: constraints from early Palaeozoic magmatism , 2017 .

[18]  Qinghong Zhang,et al.  Heterostructured TiO2/WO3 Nanocomposites for Photocatalytic Degradation of Toluene under Visible Light , 2017 .

[19]  Qinghong Zhang,et al.  Large Scaled Synthesis of Heterostructured Electrospun TiO2/SnO2 Nanofibers with an Enhanced Photocatalytic Activity , 2017 .

[20]  G. Zeng,et al.  Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst , 2016 .

[21]  Tingyu Zhu,et al.  Effect of the properties of MnOx/activated carbon and flue gas components on Hg0 removal at low temperature , 2016 .

[22]  N. Yan,et al.  Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas , 2016 .

[23]  B. Shen,et al.  Effects of flue gas components on removal of elemental mercury over Ce-MnOx/Ti-PILCs. , 2016, Journal of hazardous materials.

[24]  Junying Zhang,et al.  Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 2. Identification of involved reaction mechanism , 2016 .

[25]  N. Yan,et al.  Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury. , 2015, Journal of hazardous materials.

[26]  Liqing Li,et al.  CuO–CeO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures , 2015 .

[27]  J. Hao,et al.  Design Strategies for CeO2-MoO3 Catalysts for DeNOx and Hg(0) Oxidation in the Presence of HCl: The Significance of the Surface Acid-Base Properties. , 2015, Environmental science & technology.

[28]  B. Shen,et al.  Simultaneous Removal of NO and Hg(0) from Flue Gas over Mn-Ce/Ti-PILCs. , 2015, Environmental science & technology.

[29]  Liqing Li,et al.  SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst. , 2015, Environmental science & technology.

[30]  N. Yan,et al.  MnOx/Graphene for the Catalytic Oxidation and Adsorption of Elemental Mercury. , 2015, Environmental science & technology.

[31]  B. Shen,et al.  Mercury removal over the vanadia-titania catalyst in CO2-enriched conditions , 2015 .

[32]  Jiming Hao,et al.  Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. , 2015, Environmental science & technology.

[33]  Ming Chang,et al.  Insights into the mechanism of heterogeneous mercury oxidation by HCl over V2O5/TiO2 catalyst: Periodic density functional theory study , 2015 .

[34]  Junying Zhang,et al.  Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas. , 2014, Environmental science & technology.

[35]  Hongbo Zeng,et al.  Efficient removal of elemental mercury (Hg0) by SBA-15-Ag adsorbents , 2014 .

[36]  H. Gutberlet,et al.  Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants , 2014 .

[37]  Zhanhu Guo,et al.  A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. , 2013, Environmental science & technology.

[38]  J. Xiang,et al.  Catalytic oxidation of Hg0 by CuO–MnO2–Fe2O3/γ-Al2O3 catalyst , 2013 .

[39]  Caixia Liu,et al.  Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. , 2012, Environmental science & technology.

[40]  Hailong Li,et al.  Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures , 2012 .

[41]  Hailong Li,et al.  CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. , 2011, Environmental science & technology.

[42]  Hai-Long Li,et al.  Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas , 2011 .

[43]  Hong-Jip Kim,et al.  High deNOx performance of Mn/TiO2 catalyst by NH3 , 2010 .

[44]  Yue Liu,et al.  Low-temperature selective catalytic reduction of NO with NH(3) over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study. , 2010, Chemosphere.

[45]  G. Bae,et al.  Removal of elemental mercury (Hg(0)) by nanosized V2O5/TiO2 catalysts. , 2009, Environmental science & technology.

[46]  J. Jia,et al.  Adsorption and Catalytic Oxidation of Gaseous Elemental Mercury in Flue Gas over MnOx/Alumina , 2009 .

[47]  Yan Liu,et al.  Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant. , 2008, Environmental science & technology.

[48]  Chang-Yu Wu,et al.  Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite , 2008 .

[49]  P. Smirniotis,et al.  Manganese Oxide/Titania Materials for Removal of NOx and Elemental Mercury from Flue Gas , 2008 .

[50]  M. S. Hegde,et al.  Low-Temperature Selective Catalytic Reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu) , 2008 .

[51]  Yan Cao,et al.  Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal. , 2008, Environmental science & technology.

[52]  P. Boolchand,et al.  Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3 , 2007 .

[53]  Harald F Krug,et al.  Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells. , 2007, Environmental science & technology.

[54]  A. Presto,et al.  Survey of catalysts for oxidation of mercury in flue gas. , 2006, Environmental science & technology.

[55]  T. Keener,et al.  Development of cost-effective noncarbon sorbents for Hg(0) removal from coal-fired power plants. , 2006, Environmental science & technology.

[56]  M. Larrubia,et al.  Catalytic abatement of NOx: Chemical and mechanistic aspects , 2005 .

[57]  R. Srivastava,et al.  Investigation of Selective Catalytic Reduction Impact on Mercury Speciation under Simulated NOx Emission Control Conditions , 2004, Journal of the Air & Waste Management Association.

[58]  Steven A. Benson,et al.  Status review of mercury control options for coal-fired power plants , 2003 .

[59]  Jeffrey S. Thompson,et al.  Mercury Speciation at Power Plants Using SCR and SNCR Control Technologies , 2003 .

[60]  D. Karatza,et al.  Study of mercury absorption and desorption on sulfur impregnated carbon , 2000 .

[61]  Guido Busca,et al.  Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review , 1998 .