Monte Carlo techniques for real-time quantum dynamics

The stochastic-gauge representation is a method of mapping the equation of motion for the quantum mechanical density operator onto a set of equivalent stochastic differential equations. One of the stochastic variables is termed the ''weight'', and its magnitude is related to the importance of the stochastic trajectory. We investigate the use of Monte Carlo algorithms to improve the sampling of the weighted trajectories and thus reduce sampling error in a simulation of quantum dynamics. The method can be applied to calculations in real time, as well as imaginary time for which Monte Carlo algorithms are more-commonly used. The Monte-Carlo algorithms are applicable when the weight is guaranteed to be real, and we demonstrate how to ensure this is the case. Examples are given for the anharmonic oscillator, where large improvements over stochastic sampling are observed.

[1]  Peter D. Drummond,et al.  Positive P representation: Application and validity , 1997 .

[2]  P. D. Drummond,et al.  Gauge P representations for quantum-dynamical problems: Removal of boundary terms , 2002 .

[3]  M. Olsen,et al.  Optimization of the positive-P representation for the anharmonic oscillator , 2001 .

[4]  Immanuel Bloch,et al.  Collapse and revival of the matter wave field of a Bose–Einstein condensate , 2002, Nature.

[5]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[6]  G. J. Daniell,et al.  Error analysis for correlated Monte Carlo data , 1984 .

[7]  P D Drummond,et al.  Canonical Bose gas simulations with stochastic gauges. , 2004, Physical review letters.

[8]  Drummond,et al.  Comment on "Quantum noise in the parametric oscillator: From squeezed states to coherent-state superpositions" , 1990, Physical review letters.

[9]  Matthew J. Davis,et al.  Time-reversal test for stochastic quantum dynamics. , 2004, Physical review letters.

[10]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[11]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[12]  D. Ceperley,et al.  Simulation of quantum many-body systems by path-integral methods , 1984 .

[13]  Peter D. Drummond,et al.  Gaussian quantum operator representation for bosons , 2003, quant-ph/0308064.

[14]  Kurt Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics , 2000 .

[15]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[16]  Trivedi,et al.  Ground-state correlations of quantum antiferromagnets: A Green-function Monte Carlo study. , 1990, Physical review. B, Condensed matter.

[17]  First-principles quantum simulations of many-mode open interacting Bose gases using stochastic gauge methods , 2004, cond-mat/0507023.

[18]  R. Graham,et al.  DYNAMICAL QUANTUM NOISE IN TRAPPED BOSE-EINSTEIN CONDENSATES , 1998 .

[19]  Wolfgang von der Linden,et al.  A quantum Monte Carlo approach to many-body physics , 1992 .

[20]  K E Schmidt,et al.  Superfluid Fermi gases with large scattering length. , 2003, Physical review letters.

[21]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[22]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[23]  D Ceperley,et al.  Quantum Monte Carlo , 1986, Science.

[24]  Carmichael,et al.  Quantum noise in the parametric oscillator: From squeezed states to coherent-state superpositions. , 1988, Physical review letters.

[25]  Mak,et al.  Low-temperature dynamical simulation of spin-boson systems. , 1994, Physical review. B, Condensed matter.

[26]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics , 2000 .

[27]  J. Corney,et al.  Gaussian quantum Monte Carlo methods for fermions and bosons. , 2004, Physical review letters.

[28]  R. Feynman Simulating physics with computers , 1999 .

[29]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[30]  P. D. Drummond,et al.  Quantum dynamics of evaporatively cooled Bose-Einstein condensates , 1999 .

[31]  J Boronat,et al.  Equation of state of a Fermi gas in the BEC-BCS crossover: a quantum Monte Carlo study. , 2004, Physical review letters.

[32]  Reid,et al.  Squeezing of quantum solitons. , 1987, Physical review letters.

[33]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[34]  Drummond,et al.  Quantum tunneling and thermal activation in the parametric oscillator. , 1989, Physical review. A, General physics.

[35]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[36]  P. Drummond,et al.  Quantum dynamics with stochastic gauge simulations , 2003, cond-mat/0309514.

[37]  I Bloch,et al.  Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. , 2001, Physical review letters.

[38]  David M. Ceperley,et al.  Microscopic Simulations in Physics , 1999 .

[39]  Peter D. Drummond,et al.  Gaussian quantum operator representation for bosons (22 pages) , 2003 .

[40]  C. Gardiner,et al.  Generalised P-representations in quantum optics , 1980 .

[41]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.