Poly(3-hexylthiophene)-block-poly(pyridinium phenylene)s: Block Polymers of p- and n-Type Semiconductors

Conjugated crystalline−crystalline donor−acceptor−donor block copolymer semiconductors, with regioregular poly(3-hexylthiophene) as a donor (p-type) block and poly(pyridinium pheneylene) as an acceptor (n-type) block within the backbone, were produced by sequential Grignard metathesis synthesis of poly(3-hexylthiophene), a Yamamoto-type cross-coupling polymerization−cyclization sequence. These conjugated block copolymers are soluble in organic solvents and display broad optical absorption bands extending close to the near-infrared region. They show reversible ambipolar redox properties with high electron affinities of 3.8−4.0 eV as well as useful ionization potentials of 5.1 eV that are characteristic of the respective blocks. Block copolymers from p- and n-type organic semiconductors are of interest for the formation of nanostructured bulk heterojunctions in photovoltaic devices.

[1]  T. Swager,et al.  Poly(pyridinium phenylene)s: water-soluble N-type polymers. , 2009, Journal of the American Chemical Society.

[2]  R. Segalman,et al.  The relationship between morphology and performance of donor–acceptor rod–coil block copolymer solar cells , 2009 .

[3]  M. Thelakkat,et al.  Crystalline-crystalline donor-acceptor block copolymers. , 2008, Angewandte Chemie.

[4]  M. Ratner,et al.  n-channel polymers by design: optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. , 2008, Journal of the American Chemical Society.

[5]  A. Facchetti,et al.  Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis(dicyanovinylene) core. , 2008, Journal of the American Chemical Society.

[6]  Ullrich Scherf,et al.  Organic semiconductors for solution-processable field-effect transistors (OFETs). , 2008, Angewandte Chemie.

[7]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[8]  M. Thelakkat,et al.  Microphase‐Separated Donor–Acceptor Diblock Copolymers: Influence of HOMO Energy Levels and Morphology on Polymer Solar Cells , 2007 .

[9]  Stéphane Guillerez,et al.  Poly(3‐hexylthiophene) Fibers for Photovoltaic Applications , 2007 .

[10]  Bernard Kippelen,et al.  A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. , 2007, Journal of the American Chemical Society.

[11]  J. Fréchet,et al.  Organic semiconducting oligomers for use in thin film transistors. , 2007, Chemical reviews.

[12]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[13]  L. Balk,et al.  Conjugated triblock copolymers containing both electron-donor and electron-acceptor blocks , 2006 .

[14]  H. Hörhold,et al.  Comparative Study of M3EH−PPV-Based Bilayer Photovoltaic Devices , 2006 .

[15]  A. Chiche,et al.  Charge separation at self-assembled nanostructured bulk interface in block copolymers. , 2006, Angewandte Chemie.

[16]  R. Gil,et al.  Experimental evidence for the quasi-living nature of the grignard metathesis method for the synthesis of regioregular poly(3-alkylthiophenes) , 2005 .

[17]  Hiroki Sugiura,et al.  Functionalized [3 + 3]cycloalkynes: substituent effect on self-aggregation by nonplanar pi-pi interactions. , 2005, The Journal of organic chemistry.

[18]  C. Frisbie,et al.  Field effect transport and trapping in regioregular polythiophene nanofibers , 2004 .

[19]  S. Jenekhe,et al.  Efficient Solar Cells from Layered Nanostructures of Donor and Acceptor Conjugated Polymers , 2004 .

[20]  Abhishek P. Kulkarni,et al.  Electron Transport Materials for Organic Light-Emitting Diodes , 2004 .

[21]  J. Ding,et al.  Synthesis and properties of random and alternating fluorene/carbazole copolymers for use in blue light-emitting devices , 2004 .

[22]  Samson A Jenekhe,et al.  High electron mobility in ladder polymer field-effect transistors. , 2003, Journal of the American Chemical Society.

[23]  H. Reissig,et al.  An Expedient and Stereoselective Synthesis of Alkenyl Nonaflates from Silyl Enol Ethers: Optimization, Scope and Limitations , 2002 .

[24]  Robert S. Loewe,et al.  Regioregular, Head-to-Tail Coupled Poly(3-alkylthiophenes) Made Easy by the GRIM Method: Investigation of the Reaction and the Origin of Regioselectivity , 2001 .

[25]  S. Jenekhe,et al.  Efficient photovoltaic cells from semiconducting polymer heterojunctions , 2000 .

[26]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[27]  T. Swager,et al.  Conducting redox polymers: investigations of polythiophene-Ru(bpy)3n+ hybrid materials , 1999 .

[28]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.

[29]  John R. Reynolds,et al.  High Contrast Ratio and Fast-Switching Dual Polymer Electrochromic Devices , 1998 .

[30]  T. Swager,et al.  The Molecular Wire Approach to Sensory Signal Amplification , 1998 .

[31]  Arno Kraft,et al.  Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light. , 1998, Angewandte Chemie.

[32]  G. Zotti,et al.  Irreversible processes in the electrochemical reduction of polythiophenes. Chemical modifications of the polymer and charge-trapping phenomena , 1995 .

[33]  T. Ikeda,et al.  Unique optical and electrochemical properties of π-conjugated electrically conducting copolymers consisting of electron-withdrawing pyridine units and electron-donating thiophene units , 1991 .

[34]  L. Michaelis,et al.  THE VIOLOGEN INDICATORS , 1933, The Journal of general physiology.