Approximating the Sparsest k-Subgraph in Chordal Graphs

Given a simple undirected graph G = (V, E) and an integer k < |V|, the Sparsest k -Subgraph problem asks for a set of k vertices which induces the minimum number of edges. As a generalization of the classical independent set problem, Sparsest k -Subgraph is \(\mathcal{NP}\)-hard and even not approximable unless \(\mathcal{P} = \mathcal{NP}\) in general graphs. Thus, we investigate Sparsest k -Subgraph in graph classes where independent set is polynomial-time solvable, such as subclasses of perfect graphs. Our two main results are the \(\mathcal{NP}\)-hardness of Sparsest k -Subgraph on chordal graphs, and a greedy 2-approximation algorithm. Finally, we also show how to derive a PTAS for Sparsest k -Subgraph on proper interval graphs.

[1]  Marin Bougeret,et al.  The k-Sparsest Subgraph Problem , 2012 .

[2]  Yehoshua Perl,et al.  Clustering and domination in perfect graphs , 1984, Discret. Appl. Math..

[3]  Nader H. Bshouty,et al.  Massaging a Linear Programming Solution to Give a 2-Approximation for a Generalization of the Vertex Cover Problem , 1998, STACS.

[4]  Bruno Simeone,et al.  The maximum vertex coverage problem on bipartite graphs , 2014, Discret. Appl. Math..

[5]  Adrian Vetta,et al.  Reducing the rank of a matroid , 2015, Discret. Math. Theor. Comput. Sci..

[6]  Ioannis Milis,et al.  A constant approximation algorithm for the densest k , 2008, Inf. Process. Lett..

[7]  Joachim Kneis,et al.  Improved Upper Bounds for Partial Vertex Cover , 2008, WG.

[8]  Aditya Bhaskara,et al.  Detecting high log-densities: an O(n¼) approximation for densest k-subgraph , 2010, STOC '10.

[9]  András Sebö,et al.  Minconvex Factors of Prescribed Size in Graphs , 2009, SIAM J. Discret. Math..

[10]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[11]  Dorit S. Hochbaum,et al.  k-edge Subgraph Problems , 1997, Discret. Appl. Math..

[12]  Rolf Niedermeier,et al.  Parameterized Complexity of Vertex Cover Variants , 2007, Theory of Computing Systems.

[13]  Petr A. Golovach,et al.  Tight Complexity Bounds for FPT Subgraph Problems Parameterized by Clique-Width , 2011, IPEC.

[14]  Tim Nonner PTAS for Densest k-Subgraph in Interval Graphs , 2011, WADS.

[15]  Rudolf Fleischer,et al.  Densest k-Subgraph Approximation on Intersection Graphs , 2010, WAOA.

[16]  Vangelis Th. Paschos,et al.  The max quasi-independent set problem , 2012, J. Comb. Optim..

[17]  Leizhen Cai,et al.  Parameterized Complexity of Cardinality Constrained Optimization Problems , 2008, Comput. J..