Cold plasma chemistry and diagnostics

Abstract This paper gives an overview of the main chemical processes which take place in cold plasmas generated in glow discharges, both in the gas phase and at the surfaces in contact with the plasma. Illustrative examples are provided where the relevance of different processes is evinced. Most common plasma characterization techniques and their recent improvements are also presented briefly.

[1]  E. Herbst Chemistry of star-forming regions. , 2005, The journal of physical chemistry. A.

[2]  J. M. Díaz-Cabrera,et al.  Study of sheath thickness in weakly ionized plasmas and its dependence on the electric potential and position of the probe , 2010 .

[3]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[4]  U. Fantz Basics of plasma spectroscopy , 2006 .

[5]  E. R. Fisher,et al.  Plasma diagnostics for unraveling process chemistry. , 2008, Annual review of analytical chemistry.

[6]  C. Domingo,et al.  Transition dipole moment of the .nu.3 band of CH3 , 1994 .

[7]  V. Herrero,et al.  Large effects of small pressure changes in the kinetics of low pressure glow discharges , 2011 .

[8]  M. Sanz,et al.  Plasma diagnostics and device properties of AlGaN/GaN HEMT passivated with SiN deposited by plasma-enhanced chemical vapour deposition , 2010 .

[9]  J. Ferreira,et al.  Characterization of minority species in reactive plasmas by cryotrap-assisted mass spectrometry , 2009 .

[10]  A. Masuda,et al.  Mass-Spectrometric Studies of Catalytic Chemical Vapor Deposition Processes of Organic Silicon Compounds Containing Nitrogen , 2006 .

[11]  P. Dawson Quadrupole mass spectrometry and its applications , 1976 .

[12]  J. Coburn,et al.  Appearance potential mass spectrometry: Discrimination of dissociative ionization products , 2000 .

[13]  F. Tabares,et al.  Testing of a pulsed He supersonic beam for plasma edge diagnostic in the TJ-IU torsatron , 1997 .

[14]  T. Trottenberg,et al.  A calorimetric probe for plasma diagnostics. , 2010, The Review of scientific instruments.

[15]  D. Tafalla,et al.  Mass spectrometric studies of the mechanism of film inhibition in hydrogen/methane plasmas in the presence of nitrogen , 2004 .

[16]  A. Ricard,et al.  An Iron Catalytic Probe for Determination of the O-atom Density in an Ar/O2 Afterglow , 2006 .

[17]  V. Herrero,et al.  Low-pressure DC air plasmas. investigation of neutral and ion chemistry. , 2005, The journal of physical chemistry. A.

[18]  Karl H. Schoenbach,et al.  Low temperature plasmas : fundamentals, technologies and techniques , 2008 .

[19]  M. Mozetič,et al.  A diagnostic method for real-time measurements of the density of nitrogen atoms in the postglow of an Ar–N2 discharge using a catalytic probe , 2005 .

[20]  C. Domingo,et al.  Double modulation‐high resolution infrared spectroscopic technique: The ν3 band of the CH3 radical and excited states of CH4 in a hollow cathode discharge , 1994 .

[21]  W. Jacob,et al.  Surface reactions during growth and erosion of hydrocarbon films , 1998 .

[22]  I. Stefanović,et al.  Dust particle formation in low pressure Ar/CH4 and Ar/C2H2 discharges used for thin film deposition , 2003 .

[23]  T. Oka,et al.  Detection of H+3 in interstellar space , 1996, Nature.

[24]  J. Coburn,et al.  Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density , 1980 .

[25]  Y. Itikawa Molecular Processes in Plasmas , 2007 .

[26]  W. Kessels,et al.  The growth kinetics of silicon nitride deposited from the SiH4-N2 reactant mixture in a remote plasma , 2004 .

[27]  Ahm Arno Smets,et al.  On the growth mechanism of a-Si:H , 2001 .

[28]  John Robertson,et al.  Low temperature growth of silicon nitride by electron cyclotron resonance plasma enhanced chemical vapour deposition , 2001 .

[29]  M. V. Malyshev,et al.  Determination of electron temperatures in plasmas by multiple rare gas optical emission, and implications for advanced actinometry , 1997 .

[30]  C. Ferreira,et al.  Surface kinetics of N and O atoms in discharges , 1996 .

[31]  Francisco J. Gordillo-Vázquez,et al.  From Carbon Nanostructures to New Photoluminescence Sources: An Overview of New Perspectives and Emerging Applications of Low‐Pressure PECVD , 2007 .

[32]  V. Herrero,et al.  Ion energy distributions for the identification of active species and processes in low pressure hollow cathode discharges , 2009 .

[33]  M. Sanz,et al.  Mass spectroscopic study of CH3 radicals produced in a hollow cathode discharge cell , 1992 .

[34]  A. Matsuda,et al.  High rate growth of microcrystalline silicon at low temperatures , 2000 .

[35]  J. Benedikt Plasma-chemical reactions: low pressure acetylene plasmas , 2010 .

[36]  D. Tafalla,et al.  Ion chemistry in cold plasmas of H2 with CH4 and N2. , 2007, The journal of physical chemistry. A.

[37]  J. Röpcke,et al.  On the spectroscopic detection of neutral species in a low-pressure plasma containing boron and hydrogen , 2003 .

[38]  V. Herrero,et al.  Use of ion-energy distributions for the identification of species and production mechanisms in low-pressure DC discharges. , 2008, Journal of mass spectrometry : JMS.

[39]  J. Ferreira,et al.  Removal of carbon films by oxidation in narrow gaps: Thermo-oxidation and plasma-assisted studies , 2009 .

[40]  V. Herrero,et al.  Spectrometric and kinetic study of a modulated glow air discharge , 2004 .

[41]  V. Herrero,et al.  Characterization and modelling of the steady state and transients of modulated hollow cathode discharges of nitric oxide , 2002 .

[42]  M. Mozetič,et al.  Characterization of hydrogen plasma with a fiber optics catalytic probe , 2005 .

[43]  V. Herrero,et al.  On the ionic chemistry in DC cold plasmas of H2 with Ar. , 2010, Physical chemistry chemical physics : PCCP.

[44]  Igor Poberaj,et al.  Catalytic probes for measuring H distribution in remote parts of hydrogen plasma reactors , 2007 .

[45]  N. Peacock,et al.  Plasma Diagnostics , 1972, Nature.

[46]  M. Mozetič,et al.  Hydrogen atom density in a solar plasma reactor , 2010 .

[47]  J. Palop,et al.  Analytical fit of the I–V characteristic for cylindrical and spherical Langmuir probes , 2003 .

[48]  R. Balbín,et al.  On the determination of edge Ti profiles by a supersonic He beam in TJ-II , 2009 .

[49]  F. Gordillo-Vazquez,et al.  Atom and ion chemistry in low pressure hydrogen dc plasmas. , 2006, The journal of physical chemistry. A.

[50]  Van de Sanden,et al.  Threshold ionization mass spectrometry study of hydrogenated amorphous carbon films growth precursors , 2005 .

[51]  Anne P. Thorne,et al.  Spectrophysics: Principles And Applications , 1974 .

[52]  C. Domingo,et al.  Diagnostics and modeling of glow discharges by time-resolved IR absorption spectroscopy , 2002 .

[53]  V. Demidov,et al.  Electric probes for plasmas: The link between theory and instrument , 2002 .

[54]  M. Sanz,et al.  Diagnostics and kinetic modeling of a hollow cathode N2O discharge , 1998 .

[55]  V. Dose,et al.  Decomposition of multicomponent mass spectra using Bayesian probability theory. , 2002, Journal of mass spectrometry : JMS.

[56]  V. Guerra Analytical Model of Heterogeneous Atomic Recombination on Silicalike Surfaces , 2007, IEEE Transactions on Plasma Science.

[57]  Alfred Grill,et al.  Cold Plasma in Materials Fabrication: From Fundamentals to Applications , 1994 .

[58]  D. Tafalla,et al.  Pulsed supersonic helium beams for plasma edge diagnosis , 1997 .

[59]  W. Jacob,et al.  Growth precursors for a-C:H film deposition in pulsed inductively coupled methane plasmas , 2005 .

[60]  Frederick E. Petry,et al.  Principles and Applications , 1997 .