The genome of model malaria parasites, and comparative genomics.

The field of comparative genomics of malaria parasites has recently come of age with the completion of the whole genome sequences of the human malaria parasite Plasmodium falciparum and a rodent malaria model, Plasmodium yoelii yoelii. With several other genome sequencing projects of different model and human malaria parasite species underway, comparing genomes from multiple species has necessitated the development of improved informatics tools and analyses. Results from initial comparative analyses reveal striking conservation of gene synteny between malaria species within conserved chromosome cores, in contrast to reduced homology within subtelomeric regions, in line with previous findings on a smaller scale. Genes that elicit a host immune response are frequently found to be species-specific, although a large variant multigene family is common to many rodent malaria species and Plasmodium vivax. Sequence alignment of syntenic regions from multiple species has revealed the similarity between species in coding regions to be high relative to non-coding regions, and phylogenetic footprinting studies promise to reveal conserved motifs in the latter. Comparison of non-synonymous substitution rates between orthologous genes is proving a powerful technique for identifying genes under selection pressure, and may be useful for vaccine design. This is a stimulating time for comparative genomics of model and human malaria parasites, which promises to produce useful results for the development of antimalarial drugs and vaccines.

[1]  Stuart M. Brown,et al.  Infectivity-associated Changes in the Transcriptional Repertoire of the Malaria Parasite Sporozoite Stage* , 2002, The Journal of Biological Chemistry.

[2]  J. Dame,et al.  The genome of Plasmodium cynomolgi is partitioned into separable domains which appear to differ in sequence stability. , 1988, Nucleic acids research.

[3]  H. Stunnenberg,et al.  A Central Role for P48/45 in Malaria Parasite Male Gamete Fertility , 2001, Cell.

[4]  J. Carlton Gene synteny across Plasmodium spp: could 'operon-like' structures exist? , 1999, Parasitology today.

[5]  R. Coppel,et al.  Size variation in chromosomes from independent cultured isolates of Plasmodium falciparum , 1985, Nature.

[6]  M. R. Adams,et al.  Comparative genomics of the eukaryotes. , 2000, Science.

[7]  J. Carlton,et al.  Of mice and malaria mutants: unravelling the genetics of drug resistance using rodent malaria models. , 2001, Trends in parasitology.

[8]  C. Janse,et al.  The conserved genome organisation of non-falciparum malaria species: the need to know more. , 2000, International journal for parasitology.

[9]  J. Adams,et al.  Exploring the transcriptome of the malaria sporozoite stage , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Tomoaki Tamaki,et al.  Sequence of Plasmodium falciparum chromosome 12 , 2002, Nature.

[11]  H. Lichtenthaler,et al.  Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. , 1999, Science.

[12]  K. Mendis,et al.  Plasmodium vivax: karyotype polymorphism of field isolates. , 1988, Experimental parasitology.

[13]  J. Stevens,et al.  Evolutionary relationships of conserved cysteine-rich motifs in adhesive molecules of malaria parasites. , 2002, Molecular biology and evolution.

[14]  R. Fleischmann,et al.  Comparative genomics and understanding of microbial biology. , 2000, Emerging infectious diseases.

[15]  P. Brown,et al.  Shotgun DNA microarrays and stage‐specific gene expression in Plasmodium falciparum malaria , 2000, Molecular microbiology.

[16]  E. Winzeler,et al.  The paradoxical population genetics of Plasmodium falciparum. , 2002, Trends in parasitology.

[17]  M. Kreitman,et al.  Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. , 2001, Genome research.

[18]  C. Janse Chromosome size polymorphism and DNA rearrangements in plasmodium. , 1993, Parasitology today.

[19]  A. Craig,et al.  Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. , 2001, Molecular and biochemical parasitology.

[20]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[21]  C. Lawrence,et al.  Human-mouse genome comparisons to locate regulatory sites , 2000, Nature Genetics.

[22]  J. Carlton,et al.  Conserved location of genes on polymorphic chromosomes of four species of malaria parasites. , 1994, Molecular and biochemical parasitology.

[23]  C. Janse,et al.  The development of genetic tools for dissecting the biology of malaria parasites. , 2000, Annual review of microbiology.

[24]  M. Mota,et al.  Migration of Plasmodium sporozoites through cells before infection. , 2001, Science.

[25]  Ruben Abagyan,et al.  Excess Polymorphisms in Genes for Membrane Proteins in Plasmodium falciparum , 2002, Science.

[26]  M Lanzer,et al.  Control of gene expression in Plasmodium falciparum. , 1998, Molecular and biochemical parasitology.

[27]  R. Gwilliam,et al.  Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13 , 2002, Nature.

[28]  Junichi Watanabe,et al.  Analysis of transcriptomes of human malaria parasite Plasmodium falciparum using full-length enriched library: identification of novel genes and diverse transcription start sites of messenger RNAs. , 2002, Gene.

[29]  J. Graves Background and Overview of Comparative Genomics. , 1998, ILAR journal.

[30]  M. Galinski,et al.  Antigenic variation in malaria: a 3' genomic alteration associated with the expression of a P. knowlesi variant antigen. , 1999, Molecular cell.

[31]  Bernard B. Suh,et al.  Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Church,et al.  A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression , 2000, Nature Genetics.

[33]  J. Carlton,et al.  The Plasmodium vivax genome sequencing project. , 2003, Trends in parasitology.

[34]  Kateryna D. Makova,et al.  Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum , 2002, Nature.

[35]  D. Higgins,et al.  Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[37]  Yingyao Zhou,et al.  Monitoring the chromosome 2 intraerythrocytic transcriptome of Plasmodium falciparum using oligonucleotide arrays. , 2002, The American journal of tropical medicine and hygiene.

[38]  Bart Barrell,et al.  A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax , 2001, Nature.

[39]  A. Cowman,et al.  Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  C. Janse,et al.  Plasmodium berghei: the application of cultivation and purification techniques to molecular studies of malaria parasites. , 1995, Parasitology today.

[41]  J. Carlton,et al.  Gene synteny in species of Plasmodium. , 1998, Molecular and biochemical parasitology.

[42]  L. M. Cummings,et al.  Serial analysis of gene expression in Plasmodium falciparum reveals the global expression profile of erythrocytic stages and the presence of anti-sense transcripts in the malarial parasite. , 2001, Molecular biology of the cell.

[43]  Aleksey Y. Ogurtsov,et al.  OWEN: aligning long collinear regions of genomes , 2002, Bioinform..

[44]  A. Scherf,et al.  Plasmodium falciparum Telomerase: De Novo Telomere Addition to Telomeric and Nontelomeric Sequences and Role in Chromosome Healing , 1998, Molecular and Cellular Biology.

[45]  F. Baas,et al.  The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains , 2001, Science.

[46]  L. Figueiredo,et al.  Plasmodium telomeres: a pathogen's perspective. , 2001, Current opinion in microbiology.

[47]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[48]  Thomas E. Wellems,et al.  Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum , 2000, Nature.

[49]  M. Smits,et al.  Chromosome-sized DNA molecules of Plasmodium falciparum. , 1985, Science.

[50]  L. Corcoran,et al.  Molecular karyotype of Plasmodium falciparum: conserved linkage groups and expendable histidine-rich protein genes. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Reddy,et al.  Gene sequence tags from Plasmodium falciparum genomic DNA fragments prepared by the "genease" activity of mung bean nuclease. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Adams,et al.  An expanding ebl family of Plasmodium falciparum. , 2001, Trends in parasitology.

[53]  S. Meister,et al.  Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge, and malaria infection , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. Cawley,et al.  Profiling the malaria genome: a gene survey of three species of malaria parasite with comparison to other apicomplexan species. , 2001, Molecular and biochemical parasitology.

[55]  Li Li,et al.  PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data , 2003, Nucleic Acids Res..

[56]  P. Preiser,et al.  The 235 kDa rhoptry protein of Plasmodium (yoelii) yoelii: function at the junction. , 2001, Molecular and biochemical parasitology.

[57]  Alexey S Kondrashov,et al.  Analysis of similarity within 142 pairs of orthologous intergenic regions of Caenorhabditis elegans and Caenorhabditis briggsae. , 2002, Nucleic acids research.

[58]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[59]  J. Wootton,et al.  Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. , 2001, The Journal of infectious diseases.

[60]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[61]  M. Barrett,et al.  A large gene family for putative variant antigens shared by human and rodent malaria parasites , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  Lior Pachter,et al.  VISTA : visualizing global DNA sequence alignments of arbitrary length , 2000, Bioinform..

[63]  B. Berger,et al.  Human and Mouse Gene Structure: Comparative Analysis and Application to Exon Prediction , 2000 .

[64]  T Gojobori,et al.  Large-scale search for genes on which positive selection may operate. , 1996, Molecular biology and evolution.

[65]  A. Waters Orthology between the genomes of Plasmodium falciparum and rodent malaria parasites: possible practical applications. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[66]  R. Durbin,et al.  Comparative analysis of noncoding regions of 77 orthologous mouse and human gene pairs. , 1999, Genome research.

[67]  Christian Hott,et al.  Co‐ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis , 2001, Molecular microbiology.

[68]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[69]  C. Fraser,et al.  Status of genome projects for nonpathogenic bacteria and archaea , 2000, Nature Biotechnology.

[70]  Jean Thierry-Mieg,et al.  A global analysis of Caenorhabditis elegans operons , 2002, Nature.

[71]  C. Janse,et al.  Malaria parasites: genomes and molecular biology. , 2004 .

[72]  S. Salzberg,et al.  Fast algorithms for large-scale genome alignment and comparison. , 2002, Nucleic acids research.

[73]  R. Gibbs,et al.  PipMaker--a web server for aligning two genomic DNA sequences. , 2000, Genome research.

[74]  G. Reddy,et al.  Analysis of expressed sequence tags from Plasmodium falciparum. , 1994, Molecular and biochemical parasitology.

[75]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[76]  J. Dame,et al.  Evolutionary relatedness of Plasmodium species as determined by the structure of DNA. , 1984, Science.

[77]  D. Church,et al.  Cross-species sequence comparisons: a review of methods and available resources. , 2003, Genome research.

[78]  F J Ayala,et al.  Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Huestis,et al.  The sequence of a 200 kb portion of a Plasmodium vivax chromosome reveals a high degree of conservation with Plasmodium falciparum chromosome 3. , 2001, Molecular and biochemical parasitology.

[80]  C. Janse,et al.  Interspecies conservation of gene order and intron-exon structure in a genomic locus of high gene density and complexity in Plasmodium. , 2001, Nucleic acids research.

[81]  J. Dame,et al.  Karyotype and synteny among the chromosomes of all four species of human malaria parasite. , 1999, Molecular and biochemical parasitology.

[82]  J. Olivo-Marin,et al.  A central role for Plasmodium falciparum subtelomeric regions in spatial positioning and telomere length regulation , 2002, The EMBO journal.

[83]  C. G. Black,et al.  Identification of the Plasmodium chabaudi Homologue of Merozoite Surface Proteins 4 and 5 ofPlasmodium falciparum , 1999, Infection and Immunity.

[84]  H. D. del Portillo,et al.  Comparison of introns in a cdc2-homologous gene within a number of Plasmodium species. , 1995, Molecular and biochemical parasitology.

[85]  Neil Hall,et al.  Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry , 2002, Nature.

[86]  F. Ayala,et al.  Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. , 1998, Genetics.

[87]  Nicholas L. Bray,et al.  AVID: A global alignment program. , 2003, Genome research.

[88]  A. Holder,et al.  Stage-Specific Transcription of Distinct Repertoires of a Multigene Family During Plasmodium Life Cycle , 2002, Science.

[89]  C. Janse,et al.  Comparative genomics in Plasmodium: a tool for the identification of genes and functional analysis. , 2001, Molecular and biochemical parasitology.