A Refined Gomory-Chvátal Closure for Polytopes in the Unit Cube ∗

We introduce a natural strengthening of Gomory-Chvátal cutting planes for the important class of 0/1-integer programming problems and study the properties of the elementary closure that arises from the new class of cuts. Most notably, we prove that the new closure is polyhedral, we characterize the family of all facet-defining inequalities, and we compare it to elementary closures associated with other cutting-plane procedures.

[1]  Matteo Fischetti,et al.  {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..

[2]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[3]  Gérard Cornuéjols,et al.  Valid inequalities for mixed integer linear programs , 2007, Math. Program..

[4]  S. Pokutta LOWER BOUNDS FOR CHVÁTAL-GOMORY STYLE OPERATORS , 2011 .

[5]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[6]  Juliane Dunkel,et al.  The Gomory-Chvátal closure : polyhedrality, complexity, and extensions , 2011 .

[7]  Matteo Fischetti,et al.  On the knapsack closure of 0-1 Integer Linear Programs , 2010, Electron. Notes Discret. Math..

[8]  C. Burdet,et al.  On cutting planes , 1973 .

[9]  Friedrich Eisenbrand,et al.  Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube , 1999, IPCO.

[10]  Friedrich Eisenbrand,et al.  On the Chvátal Rank of Polytopes in the 0/1 Cube , 1999, Discret. Appl. Math..

[11]  Sebastian Pokutta,et al.  On the Rank of Cutting-Plane Proof Systems , 2010, IPCO.

[12]  Noga Alon,et al.  Anti-Hadamard Matrices, Coin Weighing, Threshold Gates, and Indecomposable Hypergraphs , 1997, J. Comb. Theory, Ser. A.

[13]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[14]  Friedrich Eisenbrand,et al.  NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..

[15]  William J. Cook,et al.  On cutting-plane proofs in combinatorial optimization , 1989 .

[16]  Friedrich Eisenbrand,et al.  Cutting Planes and the Elementary Closure in Fixed Dimension , 2001, Math. Oper. Res..

[17]  Gérard Cornuéjols,et al.  Elementary closures for integer programs , 2001, Oper. Res. Lett..

[18]  Ellis L. Johnson,et al.  Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..