On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting

An ecomorphodynamic model was developed to study how Avicennia marina mangroves influence channel network evolution in sandy tidal embayments. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. The presence of mangroves was found to enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The enhanced branching of channels is also the result of a vegetation-induced increase in erosion threshold. On the other hand, this reduction in bed erodibility, together with the soil expansion driven by organic matter production, reduces the landward expansion of channels. The ongoing accretion in mangrove forests ultimately drives a reduction in tidal prism and an overall retreat of the channel network. During sea-level rise, mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone, while hindering both the branching and headward erosion of the landward expanding channels. The modelling results presented here indicate the critical control exerted by ecogeomorphological interactions in driving landscape evolution.

[1]  Marco Ghisalberti,et al.  The Structure of the Shear Layer in Flows over Rigid and Flexible Canopies , 2006 .

[2]  Carlos M. Duarte,et al.  A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 , 2011 .

[3]  John D. Boon,et al.  On basin hyposmetry and the morphodynamic response of coastal inlet systems , 1981 .

[4]  S. Temmerman,et al.  Vegetation causes channel erosion in a tidal landscape , 2007 .

[5]  Ariel E. Lugo,et al.  Mangrove Ecosystems: Successional or Steady State? , 1980 .

[6]  J. Pethick Velocity surges and asymmetry in tidal channels , 1980 .

[7]  Giulio Mariotti,et al.  A numerical model for the coupled long‐term evolution of salt marshes and tidal flats , 2010 .

[8]  Sergio Fagherazzi,et al.  Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels , 2006 .

[9]  P. Clarke,et al.  Dispersal of grey mangrove (Avicennia marina) propagules in southeastern Australia , 1993 .

[10]  B. Middleton,et al.  Degradation of mangrove tissues and implications for peat formation in Belizean island forests , 2001 .

[11]  M. Hsu,et al.  Modeling of Flow Resistance in Mangrove Swamp at Mouth of Tidal Keelung River, Taiwan , 2003 .

[12]  R. Healey,et al.  Velocity variations in salt marsh creeks, Norfolk, England , 1981 .

[13]  K. Bryan,et al.  A numerical model to simulate the formation and subsequent evolution of tidal channel networks , 2011 .

[14]  F. Engelund,et al.  A monograph on sediment transport in alluvial streams , 1967 .

[15]  K. Bryan,et al.  The influence of wind and waves on the existence of stable intertidal morphology in meso-tidal estuaries , 2015 .

[16]  H. Nepf Drag, turbulence, and diffusion in flow through emergent vegetation , 1999 .

[17]  T. Healy,et al.  Surface elevation changes and sediment characteristics of intertidal surfaces undergoing mangrove expansion and mangrove removal, Waikaraka Estuary, Tauranga Harbour, New Zealand , 2009 .

[18]  Johan van de Koppel,et al.  Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors , 2012, Reviews of Geophysics.

[19]  A. Spenceley The role of pneumatophores in sedimentary processes , 1977 .

[20]  Peter M. J. Herman,et al.  Impacts of salt marsh plants on tidal channel initiation and inheritance , 2013 .

[21]  D. Alongi Carbon cycling and storage in mangrove forests. , 2014, Annual review of marine science.

[22]  M. Luther,et al.  Flow hydrodynamics in tidal marsh canopies , 1995 .

[23]  R. Twilley,et al.  A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources , 1998 .

[24]  I. Rodríguez‐Iturbe,et al.  Scaling properties of tidal networks , 2014 .

[25]  J. M. Coleman,et al.  Mangrove Ecology and Deltaic-Estuarine Geomorphology: Cambridge Gulf-Ord River, Western Australia , 1975 .

[26]  P. D’Odorico,et al.  Geomorphic structure of tidal hydrodynamics in salt marsh creeks , 2008, Water Resources Research.

[27]  Giovanni Coco,et al.  Modelling the effects of tidal range and initial bathymetry on the morphological evolution of tidal embayments , 2013 .

[28]  P. Myerscough,et al.  The intertidal distribution of the grey mangrove (Avicennia marina) in southeastern Australia: The effects of physical conditions, interspecific competition, and predation on propagule establishment and survival , 1993 .

[29]  David Jon Furbish,et al.  Flow, Sedimentation, and Biomass Production on a Vegetated Salt Marsh in South Carolina: Toward a Predictive Model of Marsh Morphologic and Ecologic Evolution , 2004 .

[30]  Thomas J. Smith 5. Forest Structure , 2013 .

[31]  Akira Sase,et al.  Drag force due to vegetation in mangrove swamps , 1997 .

[32]  S. Temmerman,et al.  Fluxes of water, sediments, and biogeochemical compounds in salt marshes , 2013, Ecological Processes.

[33]  B. Cardinale,et al.  Dynamic interactions of life and its landscape: feedbacks at the interface of geomorphology and ecology , 2010 .

[34]  S. Hulscher,et al.  Flow routing in mangrove forests: A field study in Trang province, Thailand , 2013 .

[35]  Y. Wu,et al.  Mathematical modelling of tidal currents in mangrove forests , 2001, Environ. Model. Softw..

[36]  J. Roelvink,et al.  Long-term process-based morphological modeling of the Marsdiep Tidal Basin , 2008 .

[37]  S. Fagherazzi,et al.  On the shape and widening of salt marsh creeks , 2001 .

[38]  C. Faunce The Biology of Mangroves and Seagrasses , 2008 .

[39]  H. Shugart A Theory of Forest Dynamics , 1984 .

[40]  J. Imberger,et al.  Modeling basin‐scale internal waves in a stratified lake , 2000 .

[41]  D. Kobashi,et al.  Tidal-Scale Hydrodynamics within Mangrove Swamps , 2005, Wetlands Ecology and Management.

[42]  Uta Berger,et al.  A new approach to spatially explicit modelling of forest dynamics: spacing, ageing and neighbourhood competition of mangrove trees , 2000 .

[43]  M. van der Wegen,et al.  Long‐term morphodynamic evolution of a tidal embayment using a two‐dimensional, process‐based model , 2008 .

[44]  G. Tomasicchio Capabilities and limits for ADVP measurements of breaking waves and bores , 2006 .

[45]  J. Zimmerman,et al.  Morphodynamics of Tidal Inlet Systems , 2009 .

[46]  Neil Saintilan,et al.  How mangrove forests adjust to rising sea level. , 2014, The New phytologist.

[47]  D. Alongi Present state and future of the world's mangrove forests , 2002, Environmental Conservation.

[48]  A. Rinaldo,et al.  Tidal networks: 1. Automatic network extraction and preliminary scaling features from digital terrain maps , 1999 .

[49]  E. Wolanski,et al.  Sedimentation in Mangrove Forests , 1996 .

[50]  J. Ellison Geomorphology and sedimentology of mangroves. , 2009 .

[51]  Giovanni Coco,et al.  Morphodynamics of tidal networks: advances and challenges , 2013 .

[52]  Aart Kroon,et al.  Wave attenuation in coastal mangroves in the Red River Delta, Vietnam , 2007 .

[53]  A. W. Küchler The Mangrove in New Zealand , 1972 .

[54]  M. Marani,et al.  The Ecogeomorphology of Tidal Marshes , 2004 .

[55]  Yoshihiro Mazda,et al.  Mangroves as a coastal protection from waves in the Tong King delta, Vietnam , 1997 .

[56]  C. Paola,et al.  Modelling the effect of vegetation on channel pattern in bedload rivers , 2003 .

[57]  E. Wolanski,et al.  Tidal asymmetry in mangrove creeks , 2004, Hydrobiologia.

[58]  N. Duke,et al.  Phenological trends with latitude in the mangrove tree Avicennia marina. , 1990 .

[59]  Guillermo Sapiro,et al.  A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths , 2010 .

[60]  Giovanni Coco,et al.  Modeling the morphodynamic response of tidal embayments to sea-level rise , 2013, Ocean Dynamics.

[61]  P. V. Santen,et al.  Sedimentation in an estuarine mangrove system , 2007 .

[62]  Jedfrey M. Carlton Land-building and Stabilization by Mangroves , 1974, Environmental Conservation.

[63]  C. Lovelock,et al.  Mangrove‐forest evolution in a sediment‐rich estuarine system: opportunists or agents of geomorphic change? , 2015 .

[64]  C. Woodroffe Mangrove Sediments and Geomorphology , 2013 .

[65]  A. B. Murray,et al.  Biomorphodynamics: Physical‐biological feedbacks that shape landscapes , 2008 .

[66]  Quan Hua,et al.  Mangrove Forest and Soil Development on a Rapidly Accreting Shore in New Zealand , 2010, Ecosystems.

[67]  E. Wolanski,et al.  Hydrodynamics of a tidal creek-mangrove swamp system. , 1980 .

[68]  T. Spencer,et al.  Tidal Flows in Salt Marsh Creeks , 1979 .

[69]  K. Kathiresan,et al.  Coastal mangrove forests mitigated tsunami , 2005 .

[70]  A. Brad Murray,et al.  Contrasting the Goals, Strategies, and Predictions Associated with Simplified Numerical Models and Detailed Simulations , 2013 .

[71]  J. A. Roelvink,et al.  Coastal morphodynamic evolution techniques , 2006 .

[72]  K. McGuinness,et al.  Above- and below-ground biomass, and allometry, of four common northern Australian mangroves , 2005 .

[73]  A. Ellison,et al.  A World Without Mangroves? , 2007, Science.

[74]  H. Shugart A Theory of Forest Dynamics , 1984 .

[75]  S. Temmerman,et al.  Bio‐geomorphic effects on tidal channel evolution: impact of vegetation establishment and tidal prism change , 2013 .

[76]  Laura López-Hoffman,et al.  Environmental drivers in mangrove establishment and early development: A review , 2008 .

[77]  S. Hulscher,et al.  Tidal-scale flow routing and sedimentation in mangrove forests: combining field data and numerical modelling , 2015 .

[78]  E. Wolanski,et al.  Currents and Sediment Transport in Mangrove Forests , 1997 .

[79]  K. McKee,et al.  Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems , 2011 .

[80]  M. Kirwan,et al.  A coupled geomorphic and ecological model of tidal marsh evolution , 2007, Proceedings of the National Academy of Sciences.

[81]  Patrick Meire,et al.  Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape , 2011 .

[82]  Andrea Rinaldo,et al.  On the drainage density of tidal networks , 2001 .

[83]  D. Cahoon,et al.  Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation , 2007 .

[84]  Stijn Temmerman,et al.  Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh , 2005 .

[85]  Andrea Rinaldo,et al.  Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics , 2006 .

[86]  E. Sala,et al.  Mangroves in the Gulf of California increase fishery yields , 2008, Proceedings of the National Academy of Sciences.