Condition numbers and perturbation analysis for the Tikhonov regularization of discrete ill‐posed problems

SUMMARY One of the most successful methods for solving the least-squares problem minxAx−b� 2 with a highly ill-conditioned or rank deficient coefficient matrix A is the method of Tikhonov regularization. In this paper, we derive the normwise, mixed and componentwise condition numbers and componentwise perturbation bounds for the Tikhonov regularization. Our results are sharper than the known results. Some numerical examples are given to illustrate our results. Copyright q 2010 John Wiley & Sons, Ltd.

[1]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[2]  Serge Gratton,et al.  On the condition number of linear least squares problems in a weighted Frobenius norm , 1996 .

[3]  L. Eldén Algorithms for the regularization of ill-conditioned least squares problems , 1977 .

[4]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[5]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[6]  Lothar Reichel,et al.  Tikhonov regularization of large symmetric problems , 2005, Numer. Linear Algebra Appl..

[7]  Yimin Wei,et al.  Perturbation Identities for Regularized Tikhonov Inverses and Weighted Pseudoinverses , 2000 .

[8]  J. Rice A Theory of Condition , 1966 .

[9]  N. Higham A Survey of Componentwise Perturbation Theory in Numerical Linear Algebra , 1994 .

[10]  Alexander N. Malyshev A Unified Theoryof Conditioning for Linear Least Squares and Tikhonov Regularization Solutions , 2003, SIAM J. Matrix Anal. Appl..

[11]  Joseph F. McGrath,et al.  A Primer on Integral Equations of the First Kind: The Problem of Deconvolution and Unfolding (G. Milton Wing with the assistance of John D. Zahrt) , 1993, SIAM Rev..

[12]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[13]  Per Christian Hansen,et al.  Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank , 1990, SIAM J. Sci. Comput..

[14]  Yimin Wei,et al.  On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems , 2006, Math. Comput..

[15]  Julien Langou,et al.  Computing the conditioning of the components of a linear least-squares solution , 2009, Numer. Linear Algebra Appl..

[16]  C. B. Shaw,et al.  Improvement of the resolution of an instrument by numerical solution of an integral equation , 1972 .

[17]  Per Christian Hansen,et al.  Regularization Tools version 4.0 for Matlab 7.3 , 2007, Numerical Algorithms.

[18]  P. Hansen Perturbation bounds for discrete Tikhonov regularisation , 1989 .

[19]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[20]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[21]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[22]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[23]  C. Atkinson METHODS FOR SOLVING INCORRECTLY POSED PROBLEMS , 1985 .

[24]  D. Calvetti,et al.  Tikhonov Regularization of Large Linear Problems , 2003 .

[25]  Israel Koltracht,et al.  Mixed componentwise and structured condition numbers , 1993 .

[26]  I. Duff,et al.  On the augmented system approach to sparse least-squares problems , 1989 .

[27]  Jiri Rohn New condition numbers for matrices and linear systems , 2005, Computing.

[28]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[29]  P. Hansen Regularization,GSVD and truncatedGSVD , 1989 .

[30]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[31]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[32]  James Demmel,et al.  Extra-Precise Iterative Refinement for Overdetermined Least Squares Problems , 2009, TOMS.

[33]  C. W. Groetsch,et al.  Inverse Problems in the Mathematical Sciences , 1993 .

[34]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[35]  F. L. Bauer Zusammenfassender Bericht. Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme , 1966 .

[36]  Mårten Gulliksson,et al.  Perturbation theory for generalized and constrained linear least squares , 2000 .

[37]  M. Hanke Conjugate gradient type methods for ill-posed problems , 1995 .

[38]  Per Christian Hansen,et al.  Regularization methods for large-scale problems , 1993 .

[39]  Å. Björck Component-wise perturbation analysis and error bounds for linear least squares solutions , 1991 .

[40]  Robert D. Skeel,et al.  Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.