Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm

The multiple exp-function algorithm, as a generalization of Hirota’s perturbation scheme, is used to construct multiple wave solutions to the (3 + 1)-dimensional generalized KP and BKP equations. The resulting solutions involve generic phase shifts and wave frequencies containing many existing choices. It is also pointed out that the presented phase shifts for the two considered equations are all not of Hirota type.

[1]  Wen-Xiu Ma,et al.  A refined invariant subspace method and applications to evolution equations , 2012, 1204.5518.

[2]  Huiqun Zhang,et al.  Various exact travelling wave solutions for Kundu equation with fifth-order nonlinear term , 2010 .

[3]  Norman J. Zabusky,et al.  Soliton , 2010, Scholarpedia.

[4]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[5]  Mohammad Taghi Darvishi,et al.  Application of Multiple Exp-Function Method to Obtain Multi-Soliton Solutions of (2 + 1)- and (3 + 1)-Dimensional Breaking Soliton Equations , 2012 .

[6]  Ryogo Hirota,et al.  Soliton Solutions to the BKP Equations. I. the Pfaffian technique , 1989 .

[7]  Wenxiu Ma Generalized Bilinear Differential Equations , 2012 .

[8]  Ryogo Hirota,et al.  Soliton solutions to the BKP equations. II: The integral equation , 1989 .

[9]  Wen-Xiu Ma,et al.  Complexiton solutions of the Toda lattice equation , 2004 .

[10]  Wen-Xiu Ma,et al.  Uniqueness of the Kadomtsev-Petviashvili and Boussinesq Equations , 2011 .

[11]  R. Hirota Direct Methods in Soliton Theory (非線形現象の取扱いとその物理的課題に関する研究会報告) , 1976 .

[12]  Wen-Xiu Ma,et al.  Computers and Mathematics with Applications Linear Superposition Principle Applying to Hirota Bilinear Equations , 2022 .

[13]  Wen-Xiu Ma,et al.  Wronskian solutions of the Boussinesq equation—solitons, negatons, positons and complexitons , 2007 .

[14]  Wen-Xiu Ma,et al.  Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation , 2011, Appl. Math. Comput..

[15]  Yi Zhang,et al.  Hirota bilinear equations with linear subspaces of solutions , 2012, Appl. Math. Comput..

[16]  Tiecheng Xia,et al.  Decomposition of the generalized KP, cKP and mKP and their exact solutions , 2008 .

[17]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[18]  Willy Hereman,et al.  Symbolic methods to construct exact solutions of nonlinear partial differential equations , 1997 .

[19]  Zhenya Yan,et al.  The new tri-function method to multiple exact solutions of nonlinear wave equations , 2008 .

[20]  Nikolai A. Kudryashov,et al.  Seven common errors in finding exact solutions of nonlinear differential equations , 2009, 1011.4268.

[21]  Zuo-nong Zhu,et al.  Painlevé property, Bäcklund transformation, Lax pair and soliton-like solution for a variable coefficient KP equation , 1993 .

[22]  Wenxiu Ma,et al.  Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation , 1995, solv-int/9511005.

[23]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[24]  Wenxiu Ma,et al.  A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation , 2009, 0903.5337.

[25]  Jarmo Hietarinta,et al.  Hirota's bilinear method and soliton solutions , 2005 .

[26]  J. Nimmo,et al.  On the combinatorics of the Hirota D-operators , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Xing-Biao Hu,et al.  Construction of dKP and BKP equations with self-consistent sources , 2006 .

[28]  Khaled A. Gepreel,et al.  The (G′/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics , 2009 .

[29]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for a (3 + 1)-dimensional generalized KP equation , 2012 .

[30]  Wenxiu Ma Darboux Transformations for a Lax Integrable System in 2n Dimensions , 1996, solv-int/9605002.

[31]  Zuo-nong Zhu,et al.  Darboux transformation and exact solutions for a three‐field lattice equation , 2010 .

[32]  Wen-Xiu Ma,et al.  Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources , 2005 .

[33]  Wen-Xiu Ma,et al.  Soliton, Positon and Negaton Solutions to a Schrödinger Self-consistent Source Equation , 2003 .

[34]  Ryogo Hirota,et al.  Resonance of Solitons in One Dimension , 1983 .

[35]  Geng Xian-Guo,et al.  Grammian Determinant Solution and Pfaffianization for a (3+1)-Dimensional Soliton Equation , 2009 .

[36]  Xing-Biao Hu,et al.  Extended Gram-type determinant solutions to the Kadomtsev-Petviashvili equation , 2009, Math. Comput. Simul..

[37]  Huicheng Yin,et al.  A note on the elliptic equation method , 2008 .

[38]  Wen-Xiu Ma,et al.  Pfaffianized systems for a generalized Kadomtsev–Petviashvili equation , 2013 .

[39]  Xianguo Geng,et al.  N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation , 2007 .

[40]  W. Hereman,et al.  The tanh method: I. Exact solutions of nonlinear evolution and wave equations , 1996 .

[41]  MA Wen-Xiu A refined invariant subspace method and applications to evolution equations , 2012 .

[42]  Abdul-Majid Wazwaz Four (2 + 1)-dimensional integrable extensions of the Kadomtsev-Petviashvili equation , 2010, Appl. Math. Comput..

[43]  Wenxiu Ma,et al.  A multiple exp-function method for nonlinear differential equations and its application , 2010, 1010.3324.

[44]  Mingliang Wang,et al.  The (G' G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics , 2008 .

[45]  Ji-Huan He,et al.  Exp-function method for nonlinear wave equations , 2006 .

[46]  Robert Conte,et al.  The Painlevé Property , 1999 .

[47]  Wenxiu Ma,et al.  A second Wronskian formulation of the Boussinesq equation , 2009 .

[48]  Wang Kelin,et al.  Exact solutions for two nonlinear equations. I , 1990 .

[49]  Mohammad Taghi Darvishi,et al.  New solitary wave and periodic solutions of the foam drainage equation using the Exp-function method , 2009 .

[50]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[51]  Wen-Xiu Ma,et al.  AN APPLICATION OF THE CASORATIAN TECHNIQUE TO THE 2D TODA LATTICE EQUATION , 2008, 0804.0631.

[52]  Abdul-Majid Wazwaz,et al.  N-soliton solutions for shallow water waves equations in (1 + 1) and (2 + 1) dimensions , 2011, Appl. Math. Comput..

[53]  Wenxiu Ma,et al.  Comment on the 3+1 dimensional Kadomtsev–Petviashvili equations , 2011 .

[54]  M. A. Abdou,et al.  Application of Exp-function method for nonlinear evolution equations with variable coefficients , 2007 .