Active appearance models for segmentation of cardiac MRI data

We describe the method for segmentation of Left Ventricle (LV) in short axis cardiac MR Images in order to visibly identify the LV, and its outer wall. Segmentation of medical data is extremely time-consuming if done manually. Model based techniques represent one very promising approach. A model representing the object of interest is matched with unknown data. During the matching process the model's shape and additional properties are varied in order to iteratively improve the match. As soon as the model fits sufficiently well to the data, the properties of the model can be mapped to the data and so the segmentation is derived. The objective of this study is to show clearly the LV in particular so that any deviation from the standard dimensions in terms of shape, size or texture, can be unmistakably identified. The training set is prepared from the data obtained from a reputed hospitals and medical colleges in Pune, India. For segmentation of the Cardiac MRI, Principal Component Analysis (PCA) is used in the Active Appearance Model (AAM) building process. The AAM method shows high promise for successful application to MR image analysis in a clinical setting.

[1]  Frederic Fol Leymarie,et al.  Tracking Deformable Objects in the Plane Using an Active Contour Model , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Mehmet Üzümcü Constrained segmentation of cardiac MR image sequences , 2007 .

[3]  B. Appleton Optimal Geodesic Active Contours: Application to Heart Segmentation , 2003 .

[4]  Jenny Benois-Pineau,et al.  Real time constrained motion estimation for ECG-gated cardiac MRI , 2010, 2010 IEEE International Conference on Image Processing.

[5]  M. B. Stegmann,et al.  A Brief Introduction to Statistical Shape Analysis , 2002 .

[6]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[7]  Timothy F. Cootes,et al.  Statistical models of appearance for medical image analysis and computer vision , 2001, SPIE Medical Imaging.

[8]  K. Dill,et al.  Using quaternions to calculate RMSD , 2004, J. Comput. Chem..

[9]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[10]  Katja Bühler,et al.  MDL Spline Models: Gradient and Polynomial Reparameterisations , 2005, BMVC.

[11]  Piotr J. Slomka,et al.  Heart chambers and whole heart segmentation techniques: review , 2012, J. Electronic Imaging.

[12]  Hamed Sari-Sarraf,et al.  Volumetric segmentation via 3D active shape models , 2002, Proceedings Fifth IEEE Southwest Symposium on Image Analysis and Interpretation.

[13]  Journal of the Optical Society of America , 1950, Nature.

[14]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[15]  W. Eric L. Grimson,et al.  A shape-based approach to the segmentation of medical imagery using level sets , 2003, IEEE Transactions on Medical Imaging.

[16]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[17]  Stan Sclaroff,et al.  Active blobs: region-based, deformable appearance models , 2003, Computer Vision and Image Understanding.

[18]  Alejandro F. Frangi,et al.  Automated Detection of Regional Wall Motion Abnormalities Based on a Statistical Model Applied to Multislice Short-Axis Cardiac MR Images , 2009, IEEE Transactions on Medical Imaging.

[19]  Bjarne K. Ersbøll,et al.  FAME-a flexible appearance modeling environment , 2003, IEEE Transactions on Medical Imaging.

[20]  Avinash C. Kak,et al.  Calculating the 3d-pose of rigid-objects using active appearance models , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[21]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[22]  Timothy F. Cootes,et al.  View-based active appearance models , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[23]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[24]  Rachid Deriche,et al.  Implicit Active Shape Models for 3D Segmentation in MR Imaging , 2004, MICCAI.

[25]  Timothy F. Cootes,et al.  Constrained Active Appearance Models , 2001, ICCV.

[26]  James S. Duncan,et al.  Integrated segmentation and motion analysis of cardiac MR images using a subject-specific dynamical model , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[27]  Milan Sonka,et al.  Time-Continuous Segmentation of Cardiac Image Sequences Using Active Appearance Motion Models , 2001, IPMI.

[28]  Keyong Wang,et al.  Image segmentation combining level sets and principal component analysis , 2007, International Symposium on Multispectral Image Processing and Pattern Recognition.

[29]  Simon Baker,et al.  Active Appearance Models Revisited , 2004, International Journal of Computer Vision.

[30]  Nikos Paragios,et al.  Knowledge-based registration & segmentation of the left ventricle: a level set approach , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[31]  Timothy F. Cootes,et al.  An Information Theoretic Approach to Statistical Shape Modelling , 2001, BMVC.

[32]  Ralph Gross,et al.  Generic vs. person specific active appearance models , 2005, Image Vis. Comput..

[33]  Johan Montagnat,et al.  4D deformable models with temporal constraints: application to 4D cardiac image segmentation , 2005, Medical Image Anal..

[34]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[35]  Timothy F. Cootes,et al.  A Unified Framework for Atlas Matching Using Active Appearance Models , 1999, IPMI.

[36]  Milan Sonka,et al.  Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images , 2001, IEEE Transactions on Medical Imaging.

[37]  Christopher J. Taylor,et al.  Automatic construction of eigenshape models by direct optimization , 1998, Medical Image Anal..

[38]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[39]  Rainer Wegenkittl,et al.  Analysis of Four-Dimensional Cardiac Data Sets Using Skeleton-Based Segmentation , 2003, WSCG.

[40]  David C. Hogg,et al.  Extending the Point Distribution Model Using Polar Coordinates , 1995, CAIP.

[41]  P. Schönemann,et al.  A generalized solution of the orthogonal procrustes problem , 1966 .

[42]  James D. Thomas,et al.  Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates , 1998, IEEE Transactions on Medical Imaging.

[43]  Mikkel B. Stegmann,et al.  Object tracking using active appearance models , 2001 .

[44]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[45]  David E. Breen,et al.  Dynamic deformable models for 3D MRI heart segmentation , 2002, SPIE Medical Imaging.

[46]  Timothy F. Cootes,et al.  Wavelet-enhanced appearance modeling , 2004, SPIE Medical Imaging.

[47]  Rasmus Larsen,et al.  Multi-band modelling of appearance , 2003, Image Vis. Comput..

[48]  Milan Sonka,et al.  3-D active appearance models: segmentation of cardiac MR and ultrasound images , 2002, IEEE Transactions on Medical Imaging.

[49]  Tomaso A. Poggio,et al.  Linear Object Classes and Image Synthesis From a Single Example Image , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Timothy F. Cootes,et al.  Combining Elastic and Statistical Models of Appearance Variation , 2000, ECCV.

[51]  Flemming Friche Rodler Wavelet based 3D compression with fast random access for very large volume data , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).

[52]  Christopher J. Taylor,et al.  Using Wavelets for Compression and Multiresolution Search with Active Appearance Models , 1999, BMVC.

[53]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[54]  Max A. Viergever,et al.  A discrete dynamic contour model , 1995, IEEE Trans. Medical Imaging.

[55]  Timothy F. Cootes,et al.  A Comparative Evaluation of Active Appearance Model Algorithms , 1998, BMVC.

[56]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[57]  Milan Sonka,et al.  Automatic segmentation of echocardiographic sequences by active appearance motion models , 2002, IEEE Transactions on Medical Imaging.

[58]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[59]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[60]  N. Gore,et al.  Image Segmentation Combining Level Sets and Principal Component Analysis , 2005 .

[61]  Stan Sclaroff,et al.  Active blobs , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[62]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[63]  Fred L. Bookstein,et al.  Landmark methods for forms without landmarks: morphometrics of group differences in outline shape , 1997, Medical Image Anal..

[64]  Milan Sonka,et al.  Segmentation and interpretation of MR brain images. An improved active shape model , 1998, IEEE Transactions on Medical Imaging.

[65]  Christopher J. Taylor,et al.  A Method of Automated Landmark Generation for Automated 3D PDM Construction , 2000, BMVC.

[66]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Simon Baker,et al.  Equivalence and efficiency of image alignment algorithms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[68]  Timothy F. Cootes,et al.  A mixture model for representing shape variation , 1999, Image Vis. Comput..

[69]  Fred L. Bookstein,et al.  Thin-Plate Splines and the Atlas Problem for Biomedical Images , 1991, IPMI.

[70]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association , 2002, The international journal of cardiovascular imaging.

[71]  Mikkel B. Stegmann,et al.  Bi-temporal 3D active appearance models with applications to unsupervised ejection fraction estimation , 2005, SPIE Medical Imaging.

[72]  Timothy F. Cootes,et al.  Interpreting face images using active appearance models , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[73]  C. Twining,et al.  Automatic Construction of Optimal Statistical Shape Models , 2022 .

[74]  Alejandro F. Frangi,et al.  ICA vs. PCA Active Appearance Models: Application to Cardiac MR Segmentation , 2003, MICCAI.

[75]  Jing Xiao,et al.  Real-time combined 2D+3D active appearance models , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[76]  Bjarne K. Ersbøll,et al.  Wedgelet Enhanced Appearance Models , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[77]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[78]  Timothy F. Cootes,et al.  Automatically building appearance models from image sequences using salient features , 2002, Image Vis. Comput..

[79]  Marwa M. A. Hadhoud,et al.  Left Ventricle Segmentation in Cardiac MRI Images , 2012 .

[80]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis of Complex Valued Signals , 2000, Int. J. Neural Syst..

[81]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[82]  Caroline Petitjean,et al.  A review of segmentation methods in short axis cardiac MR images , 2011, Medical Image Anal..

[83]  Timothy F. Cootes,et al.  Coupled-View Active Appearance Models , 2000, BMVC.

[84]  José M. F. Moura,et al.  STACS: new active contour scheme for cardiac MR image segmentation , 2005, IEEE Transactions on Medical Imaging.

[85]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[86]  Tomaso A. Poggio,et al.  Multidimensional morphable models , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[87]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[88]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[89]  Timothy F. Cootes,et al.  Statistical models of appearance for computer vision , 1999 .

[90]  Timothy F. Cootes,et al.  Diffeomorphic Statistical Shape Models , 2008, BMVC.