On a Global Objective Prior from Score Rules

This paper takes a novel look at the construction of objective prior distributions. In particular we use calculus of variation methods to minimise integrals of Langrangians. It is the Langrangian which therefore is the basic construct for the objective prior. This will be based on combinations of functions representing information for density functions. Another key idea is that we think about information contained in a density function (the prior) rather than thinking about the information a density holds for a parameter.

[1]  Stephen G. Walker,et al.  Bayesian information in an experiment and the Fisher information distance , 2016 .

[2]  Christian Robert,et al.  Jeffreys priors for mixture estimation , 2015, 1511.03145.

[3]  S. Walker,et al.  An Objective Approach to Prior Mass Functions for Discrete Parameter Spaces , 2015 .

[4]  Cyril Roberto,et al.  Bounds on the deficit in the logarithmic Sobolev inequality , 2014, 1408.2115.

[5]  James O. Berger,et al.  Objective Priors for Discrete Parameter Spaces , 2012 .

[6]  J. Rustagi Variational Methods in Statistics , 2012 .

[7]  Malay Ghosh,et al.  Objective Priors: An Introduction for Frequentists , 2011, 1108.2120.

[8]  M. Ghosh,et al.  A general divergence criterion for prior selection , 2011 .

[9]  S. Lauritzen,et al.  Proper local scoring rules , 2011, 1101.5011.

[10]  Tomohiro Ando,et al.  Introduction to Bayesian analysis , 2010 .

[11]  J. Bernardo,et al.  THE FORMAL DEFINITION OF REFERENCE PRIORS , 2009, 0904.0156.

[12]  T. Sweeting On predictive probability matching priors , 2008, 0805.3073.

[13]  J. Berger The case for objective Bayesian analysis , 2006 .

[14]  A. Dawid Invariant Prior Distributions , 2006 .

[15]  M. Ghosh,et al.  Nonsubjective priors via predictive relative entropy regret , 2006, math/0605609.

[16]  Aapo Hyvärinen,et al.  Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..

[17]  Bertrand Clarke,et al.  Asymptotics of the Expected Posterior , 1999 .

[18]  Neri Merhav,et al.  Universal Prediction , 1998, IEEE Trans. Inf. Theory.

[19]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[20]  Larry Wasserman,et al.  Noninformative priors and nuisance parameters , 1993 .

[21]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[22]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[23]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[24]  Edwin T. Jaynes,et al.  Prior Probabilities , 1968, Encyclopedia of Machine Learning.

[25]  B. L. Welch,et al.  On Formulae for Confidence Points Based on Integrals of Weighted Likelihoods , 1963 .

[26]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[27]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  T. H. Gronwall Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations , 1919 .

[29]  J. Ghosh IMS Collections Pushing the Limits of Contemporary Statistics : Contributions in Honor of , 2008 .

[30]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[31]  José M Bernardo and Adrian F M Smith,et al.  BAYESIAN THEORY , 2008 .

[32]  Facultat de Matem,et al.  Noninformative Priors Do Not Exist: A Discussion with Jos , 1997 .

[33]  A. Zellner,et al.  Physics and Probability: Bayesian Analysis, Model Selection and Prediction , 1993 .

[34]  J. Bernardo Reference Posterior Distributions for Bayesian Inference , 1979 .

[35]  A. Bhattacharyya On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .