On a Global Objective Prior from Score Rules
暂无分享,去创建一个
[1] Stephen G. Walker,et al. Bayesian information in an experiment and the Fisher information distance , 2016 .
[2] Christian Robert,et al. Jeffreys priors for mixture estimation , 2015, 1511.03145.
[3] S. Walker,et al. An Objective Approach to Prior Mass Functions for Discrete Parameter Spaces , 2015 .
[4] Cyril Roberto,et al. Bounds on the deficit in the logarithmic Sobolev inequality , 2014, 1408.2115.
[5] James O. Berger,et al. Objective Priors for Discrete Parameter Spaces , 2012 .
[6] J. Rustagi. Variational Methods in Statistics , 2012 .
[7] Malay Ghosh,et al. Objective Priors: An Introduction for Frequentists , 2011, 1108.2120.
[8] M. Ghosh,et al. A general divergence criterion for prior selection , 2011 .
[9] S. Lauritzen,et al. Proper local scoring rules , 2011, 1101.5011.
[10] Tomohiro Ando,et al. Introduction to Bayesian analysis , 2010 .
[11] J. Bernardo,et al. THE FORMAL DEFINITION OF REFERENCE PRIORS , 2009, 0904.0156.
[12] T. Sweeting. On predictive probability matching priors , 2008, 0805.3073.
[13] J. Berger. The case for objective Bayesian analysis , 2006 .
[14] A. Dawid. Invariant Prior Distributions , 2006 .
[15] M. Ghosh,et al. Nonsubjective priors via predictive relative entropy regret , 2006, math/0605609.
[16] Aapo Hyvärinen,et al. Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..
[17] Bertrand Clarke,et al. Asymptotics of the Expected Posterior , 1999 .
[18] Neri Merhav,et al. Universal Prediction , 1998, IEEE Trans. Inf. Theory.
[19] L. Wasserman,et al. The Selection of Prior Distributions by Formal Rules , 1996 .
[20] Larry Wasserman,et al. Noninformative priors and nuisance parameters , 1993 .
[21] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[22] J. Rissanen. A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .
[23] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[24] Edwin T. Jaynes,et al. Prior Probabilities , 1968, Encyclopedia of Machine Learning.
[25] B. L. Welch,et al. On Formulae for Confidence Points Based on Integrals of Weighted Likelihoods , 1963 .
[26] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[27] H. Jeffreys. An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[28] T. H. Gronwall. Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations , 1919 .
[29] J. Ghosh. IMS Collections Pushing the Limits of Contemporary Statistics : Contributions in Honor of , 2008 .
[30] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[31] José M Bernardo and Adrian F M Smith,et al. BAYESIAN THEORY , 2008 .
[32] Facultat de Matem,et al. Noninformative Priors Do Not Exist: A Discussion with Jos , 1997 .
[33] A. Zellner,et al. Physics and Probability: Bayesian Analysis, Model Selection and Prediction , 1993 .
[34] J. Bernardo. Reference Posterior Distributions for Bayesian Inference , 1979 .
[35] A. Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .