Images as embedding maps and minimal surfaces: movies, color, and volumetric medical images

A general geometrical framework for image processing is presented. We consider intensity images as surfaces in the (x, I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in "master" geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here we give the basic motivation and apply the scheme to enhance images. We present the concept of an image as a surface in dimensions higher than the three dimensional intuitive space. This will help us handle movies, color, and volumetric medical images.

[1]  Gary E. Ford,et al.  Invariance of edges and corners under mean-curvature diffusions of images , 1995, Electronic Imaging.

[2]  Jean-Michel Morel,et al.  Morphological Approach to Multiscale Analysis: From Principles to Equations , 1994, Geometry-Driven Diffusion in Computer Vision.

[3]  Ron Kimmel,et al.  Intrinsic Scale Space for Images on Surfaces: The Geodesic Curvature Flow , 1997, CVGIP Graph. Model. Image Process..

[4]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[5]  Ron Kimmel,et al.  From High Energy Physics to Low Level Vision , 1997, Scale-Space.

[6]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[7]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[8]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[9]  Physics Letters , 1962, Nature.

[10]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[11]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[12]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[13]  R. Kimmel,et al.  Minimal surfaces: a geometric three dimensional segmentation approach , 1997 .

[14]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  H. Soner,et al.  Level set approach to mean curvature flow in arbitrary codimension , 1996 .

[16]  Antonin Chambolle,et al.  Partial differential equations and image processing , 1994, Proceedings of 1st International Conference on Image Processing.

[17]  P. Concus Numerical solution of the minimal surface equation , 1967 .

[18]  Alfred M. Bruckstein,et al.  A new method for image segmentation , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[19]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[20]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[21]  Max A. Viergever,et al.  Nonlinear scale-space , 1995, Image Vis. Comput..

[22]  James A. Sethian,et al.  Image Processing: Flows under Min/Max Curvature and Mean Curvature , 1996, CVGIP Graph. Model. Image Process..

[23]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[24]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..