CMOS Silicon Physical Unclonable Functions Based on Intrinsic Process Variability

This paper presents an extreme-low-power mixed-signal CMOS integrated circuit for product identification and anti-counterfeiting, which implements a physical unclonable function operating with a challenge-response scheme. We devise a series of circuits and algorithmic solutions based on the use of a process monitor and on the prediction of the erratic response bits which allow to suppress the effects of temperature, voltage supply and process variations in order to obtain a robust and reliable behavior.

[1]  Lejla Batina,et al.  RFID-Tags for Anti-counterfeiting , 2006, CT-RSA.

[2]  G. Iannaccone,et al.  Silicon Physical Unclonable Function resistant to a 1025-trial brute force attack in 90 nm CMOS , 2009, 2009 Symposium on VLSI Circuits.

[3]  Paul C. Kocher,et al.  Differential Power Analysis , 1999, CRYPTO.

[4]  Eli Biham,et al.  Differential Fault Analysis of Secret Key Cryptosystems , 1997, CRYPTO.

[5]  F. Reynolds Thermally accelerated aging of semiconductor components , 1974 .

[6]  G. Edward Suh,et al.  Physical Unclonable Functions for Device Authentication and Secret Key Generation , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[7]  Stephen A. Benton,et al.  Physical one-way functions , 2001 .

[8]  G. Iannaccone,et al.  CMOS unclonable system for secure authentication based on device variability , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[9]  Vidyasagar Potdar,et al.  A Survey of RFID Authentication Protocols , 2008, 22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008).

[10]  W. R. Daasch,et al.  IC identification circuit using device mismatch , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[11]  David A. Wagner,et al.  Privacy for RFID through trusted computing , 2005, WPES '05.

[12]  Boris Skoric,et al.  Information-Theoretic Security Analysis of Physical Uncloneable Functions , 2005, Financial Cryptography.

[13]  Marten van Dijk,et al.  A technique to build a secret key in integrated circuits for identification and authentication applications , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[14]  Markus G. Kuhn,et al.  Tamper resistance: a cautionary note , 1996 .

[15]  G. Edward Suh,et al.  Extracting secret keys from integrated circuits , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[16]  Ying Su,et al.  A 1.6pJ/bit 96% Stable Chip-ID Generating Circuit using Process Variations , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[17]  Ross J. Anderson,et al.  Optical Fault Induction Attacks , 2002, CHES.