Hybrid Steering Logic for Single-Gimbal Control Moment Gyroscopes

The development of a hybrid steering logic that maintains attitude tracking precision while avoiding hyperbolic internal singularities or escaping elliptic singularities inherent to single-gimbal control moment gyroscopes is discussed. The hybrid steering logic enables null motion and limits torque error when approaching a hyperbolic internal singularity, or it adds torque error and limits null motion when approaching an elliptic internal or external singularity. The hybrid-steering-logic algorithm accomplishes these tasks through the definitions of novel singularity metrics that transition continuously from local-gradient to pseudoinverse methods when moving from hyperbolic to elliptic singularities. Analysis and simulations are presented to demonstrate the performance of the hybrid steering logic as compared with the two legacy methods. The development and results are applied to a four-single-gimbal-control-moment-gyroscope pyramid arrangement with a skew angle of θ = 54.74 deg.

[1]  J. E. Notti,et al.  Integrated Power/Attitude Control System (IPACS) , 1975 .

[2]  G. Margulies Geometric Theory of Single-Gimbal Control Moment Gyro System , 1978 .

[3]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[4]  Srinivas R. Vadali,et al.  Preferred gimbal angles for single gimbal control moment gyros , 1989 .

[5]  Joseph A. Paradiso,et al.  Steering law design for redundant single-gimbal control moment gyroscopes. [for spacecraft attitude control] , 1990 .

[6]  Joseph A. Paradiso Global steering of single gimballed control moment gyroscopes using a directed search , 1992 .

[7]  A.A. Rodriguez,et al.  A preferred trajectory tracking steering law for spacecraft with redundant CMGs , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[8]  Haruhisa Kurokawa,et al.  CONSTRAINED STEERING LAW OF PYRAMID-TYPE CONTROL MOMENT GYROS AND GROUND TESTS , 1997 .

[9]  John L. Junkins,et al.  Feedback Control Law for Variable Speed Control Moment Gyros , 1998 .

[10]  K. Ford,et al.  Singular Direction Avoidance Steering for Control-Moment Gyros , 1998 .

[11]  Haruhisa Kurokawa A Geometric Study of Single Gimbal Control Moment Gyros , 1998 .

[12]  John L. Junkins,et al.  CMC SINGULARITY AVOIDANCE USING VSCMG NULL MOTION , 1998 .

[13]  J. Junkins,et al.  Singularity Avoidance Using Null Motion and Variable-Speed Control Moment Gyros , 2000 .

[14]  B. Wie,et al.  Singularity Robust Steering Logic for Redundant Single-Gimbal Control Moment Gyros , 2000 .

[15]  Bong Wie,et al.  Rapid Multitarget Acquisition and Pointing Control of Agile Spacecraft , 2000 .

[16]  D. J. Richie,et al.  Flywheel simultaneous attitude control and energy storage using a VSCMG configuration , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).

[17]  Panagiotis Tsiotras,et al.  Singularity Analysis and Avoidance of Variable-Speed Control Moment Gyros - Part I : No Power Constraint Case , 2004 .

[18]  David A. DeVon,et al.  Closed-Loop Power Tracking for an Integrated Power and Attitude Control System using Variable Speed Control Moment Gyroscopes , 2004 .

[19]  V. Babuska,et al.  A review of technology developments in flywheel attitude control and energy transmission systems , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[20]  P. Tsiotras,et al.  Singularity Analysis of Variable Speed Control Moment Gyros , 2004 .

[21]  Di Zhou,et al.  Spacecraft attitude control with double-gimbaled control moment gyroscopes , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[22]  Bong Wie,et al.  Space Vehicle Dynamics and Control, Second Edition , 2008 .

[23]  Mason A. Peck,et al.  A Generalized Framework for Linearly-Constrained Singularity-Free Control Moment Gyro Steering Laws , 2009 .