Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy

[1]  Myung-Hyun Ryou,et al.  In-depth correlation of separator pore structure and electrochemical performance in lithium-ion batteries , 2016 .

[2]  Xiaosong Huang A facile approach to make high performance nano-fiber reinforced composite separator for lithium ion batteries , 2016 .

[3]  Myung-Hyun Ryou,et al.  A water-based Al 2 O 3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries , 2016 .

[4]  Bernhard Tjaden,et al.  The application of 3D imaging techniques, simulation and diffusion experiments to explore transport properties in porous oxygen transport membrane support materials , 2016 .

[5]  Paul R. Shearing,et al.  On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems , 2016 .

[6]  David S. Eastwood,et al.  Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High‐Speed Operando Tomography and Digital Volume Correlation , 2015, Advanced science.

[7]  S. Cooper,et al.  Quantifying the transport properties of solid oxide fuel cell electrodes , 2015 .

[8]  Yuliang Cao,et al.  A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[9]  Senentxu Lanceros-Méndez,et al.  Modeling separator membranes physical characteristics for optimized lithium ion battery performance , 2015 .

[10]  Costas Elmasides,et al.  Separators for Lithium‐Ion Batteries: A Review on the Production Processes and Recent Developments , 2015 .

[11]  James B. Robinson,et al.  In-operando high-speed tomography of lithium-ion batteries during thermal runaway , 2015, Nature Communications.

[12]  Karen E. Swider-Lyons,et al.  Observation of Lithium Dendrites at Ambient Temperature and Below , 2014 .

[13]  Ozan Toprakci,et al.  A review of recent developments in membrane separators for rechargeable lithium-ion batteries , 2014 .

[14]  C. Lee,et al.  Effect of SiO2 coating on polyethylene separator with different stretching ratios for application in lithium ion batteries , 2014 .

[15]  Volker Schmidt,et al.  Three-dimensional study of compressed gas diffusion layers using synchrotron X-ray imaging , 2014 .

[16]  C. Berg Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity , 2014, Transport in Porous Media.

[17]  Nigel P. Brandon,et al.  The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes , 2014 .

[18]  Jun Wang,et al.  Tortuosity characterization of 3D microstructure at nano-scale for energy storage and conversion materials , 2014 .

[19]  Nigel P. Brandon,et al.  Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries , 2014 .

[20]  P. Withers,et al.  Quantitative X-ray tomography , 2014 .

[21]  F. Marone,et al.  X‐Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes , 2013 .

[22]  B. Münch,et al.  The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells , 2013, Journal of Materials Science.

[23]  Craig B. Arnold,et al.  Ion transport restriction in mechanically strained separator membranes , 2013 .

[24]  I. Davidson,et al.  Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries , 2012 .

[25]  Craig B. Arnold,et al.  The role of mechanically induced separator creep in lithium-ion battery capacity fade , 2011 .

[26]  Hans Eckart Exner,et al.  STEREOLOGY AND 3D MICROSCOPY: USEFUL ALTERNATIVES OR COMPETITORS IN THE QUANTITATIVE ANALYSIS OF MICROSTRUCTURES? , 2011 .

[27]  C. Jacobsen,et al.  Zernike phase contrast in scanning microscopy with X-rays. , 2010, Nature physics.

[28]  Ki Jae Kim,et al.  Effect of gamma ray irradiation on thermal and electrochemical properties of polyethylene separator for Li ion batteries , 2010 .

[29]  Nigel P. Brandon,et al.  Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery , 2010 .

[30]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[31]  Lorenz Holzer,et al.  Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion , 2008 .

[32]  S. Stock Recent advances in X-ray microtomography applied to materials , 2008 .

[33]  Taylor Francis Online International Materials Reviews , 2008 .

[34]  Daniel H. Doughty,et al.  Effects of separator breakdown on abuse response of 18650 Li-ion cells , 2007 .

[35]  H. Giesche,et al.  Mercury Porosimetry: A General (Practical) Overview , 2006 .

[36]  Sidney Diamond,et al.  Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials , 2000 .

[37]  K. Abraham Directions in secondary lithium battery research and development , 1993 .

[38]  R. Huggins Solid State Ionics , 1989 .

[39]  G. A. Muccini,et al.  Characteristics of porous beds and structures , 1956 .

[40]  E. W. Washburn Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. , 1921, Proceedings of the National Academy of Sciences of the United States of America.

[41]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[42]  Y. X. Wang,et al.  Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms , 2018 .

[43]  M. Ebner,et al.  Communication—Technique for Visualization and Quantification of Lithium-Ion Battery Separator Microstructure , 2016 .

[44]  Martin Ebner,et al.  Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes , 2015 .

[45]  Ashutosh Tiwari,et al.  Advanced Energy Materials , 2014 .

[46]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[47]  P. Shearing,et al.  Particle Size Polydispersity in Li-Ion Batteries , 2014 .

[48]  M. L. Teijelo,et al.  Electrochimica Acta , 2014 .

[49]  Arbeitsgemeninschaft Toleranzzucht Agt,et al.  Manual of methods , 2013 .

[50]  Christopher J. Orendorff,et al.  The Role of Separators in Lithium-Ion Cell Safety , 2012 .

[51]  Nigel P. Brandon,et al.  Multi Length Scale Microstructural Investigations of a Commercially Available Li-Ion Battery Electrode , 2012 .

[52]  Yet-Ming Chiang,et al.  An Analytical Method to Determine Tortuosity in Rechargeable Battery Electrodes , 2012 .

[53]  ScienceDirect Current opinion in chemical engineering , 2011 .

[54]  S. Eliziário,et al.  Materials Chemistry and Physics , 2011 .

[55]  Cumaraswamy Vipulanandan,et al.  Cement and Concrete Research , 2009 .

[56]  Aldo Fiori,et al.  Transport in Porous Media , 2008 .

[57]  Richard K. Brow,et al.  Journal of the American Ceramic Society: Introduction , 2002 .

[58]  H. Ade,et al.  CHARACTERIZATION OF THE EFFECTS OF SOFT X-RAY IRRADIATION ON POLYMERS , 2002 .

[59]  J. Howard,et al.  Characterization of microporous separators for lithium-ion batteries , 1999 .

[60]  Naoki Shimizu,et al.  Journal of Electron Spectroscopy and Related Phenomena 101--103 (1999) 761--764 , 1999 .

[61]  Pranab Das,et al.  Emerging antiplatelet agents, differential pharmacology, and clinical utility , 2010, Journal of Blood Medicine.

[62]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Wiley-VCH Particle & particle systems characterization , 1988 .

[64]  W. Appleton,et al.  The Institute of Paper Chemistry , 1988 .

[65]  David J. Hart,et al.  Journal of Power Sources , 2022 .

[66]  J. Durrant,et al.  Energy & Environmental Science , 2022 .