A chaotic salp swarm algorithm based on quadratic integrate and fire neural model for function optimization

Real-world problems generally do not possess mathematical features such as differentiability and convexity and thus require non-traditional approaches to find optimal solutions. SSA is a meta-heuristic optimization algorithm based on the swimming behaviour of salps. Though a novel idea, it suffers from a slow convergence rate to the optimal solution, due to lack of diversity in salp population. In order to improve its performance, chaotic oscillations generated from quadratic integrate and fire model have been augmented to SSA. This improves the balance between exploration and exploitation, generating diversity in the salp population, thus avoiding local entrapment. CSSA has been tested against twenty-two bench mark functions. Its performance has been compared with existing standard optimization algorithms, namely particle swarm optimization, ant–lion optimization and salp swarm algorithm. Statistical tests have been carried out to prove the superiority of chaotic salp swarm algorithm over the other three algorithms. Finally, chaotic SSA is applied on three engineering problems to demonstrate its practicability in real-life applications.

[1]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[2]  Rafael S. Parpinelli,et al.  New inspirations in swarm intelligence: a survey , 2011, Int. J. Bio Inspired Comput..

[3]  Shailesh Tiwari,et al.  Physics-Inspired Optimization Algorithms: A Survey , 2013 .

[4]  B. Selman,et al.  Hill‐climbing Search , 2006 .

[5]  Gang Zheng,et al.  Chaotic solutions in the quadratic integrate-and-fire neuron with adaptation , 2009, Cognitive Neurodynamics.

[6]  Emile H. L. Aarts,et al.  Performance of the simulated annealing algorithm , 1987 .

[7]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[8]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[9]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[10]  A. Kaveh,et al.  A new optimization method: Dolphin echolocation , 2013, Adv. Eng. Softw..

[11]  Dervis Karaboga,et al.  A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems , 2011, Appl. Soft Comput..

[12]  Chuang Liu,et al.  A novel evolutionary membrane algorithm for global numerical optimization , 2012, 2012 Third International Conference on Intelligent Control and Information Processing.

[13]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[14]  Santosh Kumar Majhi,et al.  A comprehensive survey of recent developments in neuronal communication and computational neuroscience , 2019, J. Ind. Inf. Integr..

[15]  Santosh Kumar Majhi,et al.  Design and Analysis of Modified Leaky Integrate and Fire Model , 2018, TENCON 2018 - 2018 IEEE Region 10 Conference.

[16]  Satvir Singh,et al.  An improved butterfly optimization algorithm with chaos , 2017, J. Intell. Fuzzy Syst..

[17]  Ramin Rajabioun,et al.  Cuckoo Optimization Algorithm , 2011, Appl. Soft Comput..

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[20]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[21]  Wulfram Gerstner,et al.  Neuronal Dynamics: From Single Neurons To Networks And Models Of Cognition , 2014 .

[22]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .

[23]  Ricardo Soto,et al.  Andean Condor Algorithm for cell formation problems , 2018, Natural Computing.

[24]  Xin-She Yang,et al.  Firefly algorithm with chaos , 2013, Commun. Nonlinear Sci. Numer. Simul..

[25]  Sankalap Arora,et al.  Chaotic whale optimization algorithm , 2018, J. Comput. Des. Eng..

[26]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[27]  Bilal Alatas,et al.  Chaotic bee colony algorithms for global numerical optimization , 2010, Expert Syst. Appl..

[28]  Wen-Tsao Pan,et al.  A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example , 2012, Knowl. Based Syst..

[29]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[30]  Mohamed Cheriet,et al.  Curved Space Optimization: A Random Search based on General Relativity Theory , 2012, ArXiv.

[31]  Abdolreza Hatamlou,et al.  Black hole: A new heuristic optimization approach for data clustering , 2013, Inf. Sci..

[32]  Hamed Shah-Hosseini,et al.  Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation , 2011, Int. J. Comput. Sci. Eng..

[33]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[34]  R. M. Rizk-Allah,et al.  Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems , 2018, J. Comput. Des. Eng..

[35]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[36]  Taha Mansouri,et al.  ARO: A new model-free optimization algorithm inspired from asexual reproduction , 2010, Appl. Soft Comput..

[37]  Janez Brest,et al.  A Brief Review of Nature-Inspired Algorithms for Optimization , 2013, ArXiv.

[38]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[39]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[40]  Barry Webster,et al.  A Local Search Optimization Algorithm Based on Natural Principles of Gravitation , 2003, IKE.

[41]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[42]  Xiaodong Wu,et al.  Small-World Optimization Algorithm for Function Optimization , 2006, ICNC.

[43]  Oscar Castillo,et al.  Human evolutionary model: A new approach to optimization , 2007, Inf. Sci..

[44]  Leandro dos Santos Coelho,et al.  Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization , 2008, Expert Syst. Appl..

[45]  Satvir Singh,et al.  Butterfly optimization algorithm: a novel approach for global optimization , 2018, Soft Computing.

[46]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[47]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[48]  Ali Kaveh,et al.  Colliding Bodies Optimization method for optimum discrete design of truss structures , 2014 .

[49]  Bilal Alatas,et al.  ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization , 2011, Expert Syst. Appl..

[50]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[51]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[52]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[53]  Seyed Mohammad Mirjalili,et al.  Chaotic krill herd optimization algorithm , 2014 .

[54]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[55]  Richard A. Formato,et al.  CENTRAL FORCE OPTIMIZATION: A NEW META-HEURISTIC WITH APPLICATIONS IN APPLIED ELECTROMAGNETICS , 2007 .

[56]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[57]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[58]  Xiaoming Chang,et al.  An intelligent noise reduction method for chaotic signals based on genetic algorithms and lifting wavelet transforms , 2013, Inf. Sci..

[59]  Sankalap Arora,et al.  Chaotic grey wolf optimization algorithm for constrained optimization problems , 2018, J. Comput. Des. Eng..

[60]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[61]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[62]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[63]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[64]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[65]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[66]  Sankalap Arora,et al.  Chaotic grasshopper optimization algorithm for global optimization , 2019, Neural Computing and Applications.

[67]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[68]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[69]  Samira Sadaoui,et al.  Mushroom Reproduction Optimization (MRO): A Novel Nature-Inspired Evolutionary Algorithm , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).