Arnold tongues and the Devil's Staircase in a discrete-time Hindmarsh–Rose neuron model

Abstract We investigate a three-dimensional discrete-time dynamical system, described by a three-dimensional map derived from a continuous-time Hindmarsh–Rose neuron model by the forward Euler method. For a fixed integration step size, we report a two-dimensional parameter-space for this system, where periodic structures, the so-called Arnold tongues, can be seen with periods organized in a Farey tree sequence. We also report possible modifications in this parameter-space, as a function of the integration step size.

[1]  Enno de Lange,et al.  The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. , 2008, Chaos.

[2]  Paulo C. Rech,et al.  Dynamics of a neuron model in different two-dimensional parameter-spaces , 2011 .

[3]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[4]  M. R. Kolahchi,et al.  Structured chaos in a devil's staircase of the Josephson junction. , 2014, Chaos.

[5]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[7]  Yang Yu,et al.  Integral Step Size Makes a Difference to Bifurcations of a Discrete-Time Hindmarsh-Rose Model , 2015, Int. J. Bifurc. Chaos.

[8]  Zhujun Jing,et al.  Bifurcation and chaos in discrete FitzHugh–Nagumo system ☆ , 2004 .

[9]  R. Genesio,et al.  On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron. , 2009, Chaos.

[10]  M. Sanjuán,et al.  Map-based models in neuronal dynamics , 2011 .

[11]  Zhimin He,et al.  Bifurcations and chaos in a two-dimensional discrete Hindmarsh–Rose model , 2014 .

[12]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[13]  J. M. Gonzalez-Miranda Complex bifurcation Structures in the Hindmarsh-rose Neuron Model , 2007, Int. J. Bifurc. Chaos.

[14]  H. Schuster Deterministic chaos: An introduction , 1984 .