The Research Collaboratory for Structural Bioinformatics Protein Data Bank

[1]  Gregor Blaha,et al.  Structures of MLSBK Antibiotics Bound to Mutated Large Ribosomal Subunits Provide a Structural Explanation for Resistance , 2005, Cell.

[2]  Celia A Schiffer,et al.  Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor. , 2005, Journal of medicinal chemistry.

[3]  Helen M Berman,et al.  Large macromolecular complexes in the Protein Data Bank: a status report. , 2005, Structure.

[4]  Qing Zhang,et al.  The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications , 2005, BMC Bioinformatics.

[5]  John D. Westbrook,et al.  TargetDB: a target registration database for structural genomics projects , 2004, Bioinform..

[6]  Zukang Feng,et al.  Automated and accurate deposition of structures solved by X-ray diffraction to the Protein Data Bank. , 2004, Acta crystallographica. Section D, Biological crystallography.

[7]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[8]  Zukang Feng,et al.  Ligand Depot: a data warehouse for ligands bound to macromolecules , 2004, Bioinform..

[9]  Z. Rosenberg,et al.  Microbicides urgently needed: statement by IPM CEO, Zeda Rosenberg, on new AIDS statistics. Joint United Nations Programme on HIV/AIDS (UNAIDS) releases the 2004 AIDS epidemic update. , 2004 .

[10]  Cyrus Chothia,et al.  The SUPERFAMILY database in 2004: additions and improvements , 2004, Nucleic Acids Res..

[11]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[12]  M. Gerstein,et al.  Structural Genomics: Current Progress , 2003, Science.

[13]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[14]  Zukang Feng,et al.  Validation of protein structures for protein data bank. , 2003, Methods in enzymology.

[15]  V. Stoll,et al.  X-ray crystallographic structure of ABT-378 (lopinavir) bound to HIV-1 protease. , 2002, Bioorganic & medicinal chemistry.

[16]  T. Hahn International tables for crystallography , 2002 .

[17]  J. H. Lee,et al.  Crystal structure of rabbit phosphoglucose isomerase complexed with its substrate D-fructose 6-phosphate. , 2001, Biochemistry.

[18]  A. Galizzi,et al.  The Allosteric Regulation of Pyruvate Kinase , 2000, The Journal of Biological Chemistry.

[19]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[20]  H J Fromm,et al.  Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation. , 2000, Journal of molecular biology.

[21]  M G Rossmann,et al.  Interaction of the poliovirus receptor with poliovirus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[23]  Z Dauter,et al.  Crystal structure of human muscle aldolase complexed with fructose 1,6‐bisphosphate: Mechanistic implications , 2008, Protein science : a publication of the Protein Society.

[24]  M G Rossmann,et al.  Review: rhinoviruses and their ICAM receptors. , 1999, Journal of structural biology.

[25]  R. Goody,et al.  The pre-hydrolysis state of p21(ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. , 1999, Structure.

[26]  Jordi Bella,et al.  Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor , 1999, The EMBO journal.

[27]  D. Matthews,et al.  Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S J Wodak,et al.  SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. , 1999, Acta crystallographica. Section D, Biological crystallography.

[29]  N. Chirgadze,et al.  Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. , 1997, Journal of medicinal chemistry.

[30]  L. A. Carreira,et al.  Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 A resolution. , 1997, Biochemistry.

[31]  David C. Jones,et al.  CATH--a hierarchic classification of protein domain structures. , 1997, Structure.

[32]  Rolf Hilgenfeld,et al.  An α to β conformational switch in EF-Tu , 1996 .

[33]  Timothy S. Baker,et al.  Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon , 1996, Nature.

[34]  S. Vasavanonda,et al.  ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Shai N. Gozani,et al.  Structure of a protein in a kinetic trap , 1995, Nature Structural Biology.

[36]  L. Kuo,et al.  Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases. , 1996, The Journal of biological chemistry.

[37]  E F Pai,et al.  Crystallographic studies on p21(H-ras) using the synchrotron Laue method: improvement of crystal quality and monitoring of the GTPase reaction at different time points. , 1994, Acta crystallographica. Section D, Biological crystallography.

[38]  M Geyer,et al.  Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 mutant of p21H-ras. , 1994, Biochemistry.

[39]  Susan S. Taylor,et al.  2.2 A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. , 1993, Acta crystallographica. Section D, Biological crystallography.

[40]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[41]  D L Caspar,et al.  Conformational changes in cubic insulin crystals in the pH range 7-11. , 1993, Biophysical journal.

[42]  M. Katharine Holloway,et al.  X-Ray Crystal Structure of the HIV Protease Complex with L-700,417, an Inhibitor with Pseudo C2 Symmetry , 1991 .

[43]  M. Hatada,et al.  Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere. , 1991, Journal of medicinal chemistry.

[44]  Stephen Neidle,et al.  Comparative structural studies of [3.1.0]-fused 2',3'-modified β-D-nucleosides by X-ray crystallography, NMR spectroscopy, and molecular mechanics calculations , 1991 .

[45]  S H Kim,et al.  Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. , 1991, Journal of molecular biology.

[46]  A Wlodawer,et al.  X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamine inhibitor. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[48]  G A Petsko,et al.  Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5-A resolution: implications for catalysis. , 1990, Biochemistry.

[49]  M. Summers,et al.  High-resolution structure of an HIV zinc fingerlike domain via a new NMR-based distance geometry approach. , 1990, Biochemistry.

[50]  M S Chapman,et al.  Crystal structure of human rhinovirus serotype 1A (HRV1A). , 1989, Journal of molecular biology.

[51]  T L Blundell,et al.  The structure of 2Zn pig insulin crystals at 1.5 A resolution. , 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[53]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[54]  H. Watson,et al.  Sequence and structure of yeast phosphoglycerate kinase. , 1982, The EMBO journal.

[55]  H. Watson,et al.  Structure and activity of phosphoglycerate mutase. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[56]  P R Evans,et al.  Phosphofructokinase: structure and control. , 1981 .

[57]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[58]  H. Watson,et al.  Twinning in crystals of human skeletal muscle D-glyceraldehyde-3-phosphate dehydrogenase. , 1976, Journal of molecular biology.

[59]  H. Watson,et al.  The Stereochemistry of the Protein Myoglobin , 1976 .

[60]  D. Mercola,et al.  Structure of insulin in 4-zinc insulin , 1976, Nature.

[61]  M. F. PERUTZ,et al.  Three Dimensional Fourier Synthesis of Horse Deoxyhaemoglobin at 2.8 Å Resolution , 1970, Nature.

[62]  E. Baker,et al.  Structure of Rhombohedral 2 Zinc Insulin Crystals , 1969, Nature.

[63]  N. Allewell,et al.  The structure of ribonuclease-S at 6 A resolution. , 1967, The Journal of biological chemistry.

[64]  A. North,et al.  Crystallographic studies of the activity of hen egg-white lysozyme , 1967, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[65]  D. Harker,et al.  Tertiary Structure of Ribonuclease , 1967, Nature.

[66]  D. F. Koenig,et al.  Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution , 1965, Nature.

[67]  M. Perutz,et al.  Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis , 1960, Nature.

[68]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[69]  J. D. Bernal,et al.  X-Ray Photographs of Crystalline Pepsin , 1934, Nature.