Cluster Analysis of Vortical Flow in Simulations of Cerebral Aneurysm Hemodynamics

Computational fluid dynamic (CFD) simulations of blood flow provide new insights into the hemodynamics of vascular pathologies such as cerebral aneurysms. Understanding the relations between hemodynamics and aneurysm initiation, progression, and risk of rupture is crucial in diagnosis and treatment. Recent studies link the existence of vortices in the blood flow pattern to aneurysm rupture and report observations of embedded vortices - a larger vortex encloses a smaller one flowing in the opposite direction - whose implications are unclear. We present a clustering-based approach for the visual analysis of vortical flow in simulated cerebral aneurysm hemodynamics. We show how embedded vortices develop at saddle-node bifurcations on vortex core lines and convey the participating flow at full manifestation of the vortex by a fast and smart grouping of streamlines and the visualization of group representatives. The grouping result may be refined based on spectral clustering generating a more detailed visualization of the flow pattern, especially further off the core lines. We aim at supporting CFD engineers researching the biological implications of embedded vortices.

[1]  Hans-Christian Hege,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines , 2022 .

[2]  Filip Sadlo,et al.  Visualization Tools for Vorticity Transport Analysis in Incompressible Flow , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  Simon Stegmaier,et al.  Opening the can of worms: an exploration tool for vortical flows , 2005, VIS 05. IEEE Visualization, 2005..

[4]  Bernhard Preim,et al.  Semi-Automatic Vortex Extraction in 4D PC-MRI Cardiac Blood Flow Data using Line Predicates , 2013, IEEE Transactions on Visualization and Computer Graphics.

[5]  D. Massart,et al.  Looking for natural patterns in data: Part 1. Density-based approach , 2001 .

[6]  Kwan-Liu Ma,et al.  An Illustrative Visualization Framework for 3D Vector Fields , 2011, Comput. Graph. Forum.

[7]  R. Prim Shortest connection networks and some generalizations , 1957 .

[8]  Rainald Löhner,et al.  Automatic unstructured grid generators , 1997 .

[9]  Raghu Machiraju,et al.  Geometric verification of swirling features in flow fields , 2002, IEEE Visualization, 2002. VIS 2002..

[10]  Hans-Christian Hege,et al.  Vortex and Strain Skeletons in Eulerian and Lagrangian Frames , 2007, IEEE Transactions on Visualization and Computer Graphics.

[11]  Ching-Kuang Shene,et al.  Hierarchical Streamline Bundles , 2012, IEEE Transactions on Visualization and Computer Graphics.

[12]  C. Putman,et al.  Quantitative Characterization of the Hemodynamic Environment in Ruptured and Unruptured Brain Aneurysms , 2010, American Journal of Neuroradiology.

[13]  Silvia Born,et al.  Illustrative visualization of cardiac and aortic blood flow from 4D MRI data , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[14]  D. Weiskopf,et al.  Investigating swirl and tumble flow with a comparison of visualization techniques , 2004, IEEE Visualization 2004.

[15]  Hans-Peter Seidel,et al.  Visualization with stylized line primitives , 2005, VIS 05. IEEE Visualization, 2005..

[16]  Charles Hansen,et al.  The Visualization Handbook , 2011 .

[17]  F Mut,et al.  Quantifying the Large-Scale Hemodynamics of Intracranial Aneurysms , 2014, American Journal of Neuroradiology.

[18]  R. Löhner,et al.  Fast numerical solutions of patient‐specific blood flows in 3D arterial systems , 2010, International journal for numerical methods in biomedical engineering.

[19]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[20]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[21]  Alejandro F. Frangi,et al.  Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity , 2005, IEEE Transactions on Medical Imaging.

[22]  Kai Lawonn,et al.  Combined Visualization of Wall Thickness and Wall Shear Stress for the Evaluation of Aneurysms , 2014, IEEE Transactions on Visualization and Computer Graphics.

[23]  Bernd Hamann,et al.  Illustrative Rendering of Vortex Cores , 2013, EuroVis.

[24]  Raghu Machiraju,et al.  An uncertainty-driven approach to vortex analysis using oracle consensus and spatial proximity , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[25]  Bernhard Preim,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Blood Flow Clustering and Applications in Virtual Stenting of Intracranial Aneurysms , 2022 .

[26]  D. Degani,et al.  Graphical visualization of vortical flows by means of helicity , 1990 .

[27]  Xavier Tricoche,et al.  Surface techniques for vortex visualization , 2004, VISSYM'04.

[28]  J. Crawford Introduction to bifurcation theory , 1991 .

[29]  Greg Byrne,et al.  Vortex Dynamics in Cerebral Aneurysms , 2013 .

[30]  Tobias Isenberg,et al.  Illustrative Rendering of Dense Line Data , 2010 .

[31]  F. Mut,et al.  Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture , 2011, American Journal of Neuroradiology.

[32]  Alberto M. Gambaruto,et al.  Flow structures in cerebral aneurysms , 2012 .

[33]  Aichi Chien,et al.  Computational hemodynamics framework for the analysis of cerebral aneurysms , 2011, International journal for numerical methods in biomedical engineering.

[34]  A. Algra,et al.  Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis , 2011, The Lancet Neurology.

[35]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[36]  Bernhard Preim,et al.  Automatic Detection and Visualization of Qualitative Hemodynamic Characteristics in Cerebral Aneurysms , 2012, IEEE Transactions on Visualization and Computer Graphics.

[37]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[38]  Robert S. Laramee,et al.  Similarity Measures for Enhancing Interactive Streamline Seeding , 2013, IEEE Transactions on Visualization and Computer Graphics.

[39]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[40]  Carl-Fredrik Westin,et al.  Tract-based morphometry for white matter group analysis , 2009, NeuroImage.

[41]  Peter L. Choyke,et al.  Isosurfaces as deformable models for magnetic resonance angiography , 2003, IEEE Transactions on Medical Imaging.

[42]  Bart M. ter Haar Romeny,et al.  Visualization of 4D Blood‐Flow Fields by Spatiotemporal Hierarchical Clustering , 2012, Comput. Graph. Forum.

[43]  Gerik Scheuermann,et al.  Streamline Predicates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[44]  Thomas Ertl,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Topology-preserving Λ 2 -based Vortex Core Line Detection for Flow Visualization , 2022 .

[45]  Gerik Scheuermann,et al.  The State of the Art in Flow Visualization: Partition-Based Techniques , 2008, SimVis.

[46]  Raghu Machiraju,et al.  Vortex Visualization for Practical Engineering Applications , 2006, IEEE Transactions on Visualization and Computer Graphics.

[47]  Kai Lawonn,et al.  AmniVis – A System for Qualitative Exploration of Near‐Wall Hemodynamics in Cerebral Aneurysms , 2013, Comput. Graph. Forum.

[48]  Donald B. Johnson,et al.  Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.

[49]  G. Scheuermann,et al.  Evolution of Topology in Axi-Symmetric and 3-D Viscous Flows , 2001 .

[50]  H. K. Moffatt,et al.  The degree of knottedness of tangled vortex lines , 1969, Journal of Fluid Mechanics.

[51]  Damien Garcia,et al.  Robust smoothing of gridded data in one and higher dimensions with missing values , 2010, Comput. Stat. Data Anal..

[52]  M M Hafez Numerical Simulations of Incompressible Flows , 2003 .

[53]  MING JIANG,et al.  Detection and Visualization of Vortices , 2005, The Visualization Handbook.