Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets

A compact multiplexed system of electrospraying and a method of fabricating the multiplex system is provided in order to increase by orders of magnitude the liquid flow rate to be dispersed and of retaining the quasi-monodispersity of the generated droplets. The system can be microfabricated as an array of nozzles etched in silicon using a microfabrication technique selected from micro-electro mechanical fabrication techniques and/or micromolding techniques, with a density of 100-2000 sources/cm2. The successful performace of the multiplexed system is critically dependent on a careful selection of the electrode configuration, with entails an extractor electrode mounted at a distance from the nozzle array. The one or more extractor electrodes have the dual function of limiting electric field cross talk between neighboring sources and minimizing space charge feedback from the spray cloud. The system may be optimized to produce uniform droplets simultaneously from all paralleliyed electrosprays, each one operating as an isolated spray in the quasi-monodisperse cone-jet mode.

[1]  A. Gomez,et al.  Generation of Monodisperse Water Droplets from Electrosprays in a Corona-Assisted Cone-Jet Mode , 1995 .

[2]  A. Gomez,et al.  Monodisperse Electrosprays of Low Electric Conductivity Liquids in the Cone-Jet Mode , 1996, Journal of colloid and interface science.

[3]  Richard C. Flagan,et al.  Scale-up of electrospray atomization using linear arrays of Taylor cones , 1993 .

[4]  M. Márquez,et al.  Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets , 2002, Science.

[5]  M. Madou Fundamentals of microfabrication , 1997 .

[6]  R. Bocanegraa,et al.  Multiple electrosprays emitted from an array of holes , 2005 .

[7]  Colleen K Van Pelt,et al.  Automated chip‐based nanoelectrospray‐mass spectrometry for rapid identification of proteins separated by two‐dimensional gel electrophoresis , 2003, Electrophoresis.

[8]  Charles J. Barinaga,et al.  Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry , 1988 .

[9]  Masayoshi Esashi,et al.  Silicon Micromachining , 1998, Digest of Papers. Microprocesses and Nanotechnology'98. 198 International Microprocesses and Nanotechnology Conference (Cat. No.98EX135).

[10]  S. Pratsinis,et al.  Electrosprayed and selenized Cu/In metal particle films , 2004 .

[11]  A. Bailey,et al.  ELECTROSTATIC SPRAYING OF LIQUIDS , 1988 .

[12]  D. Kyritsis,et al.  Optimization of a catalytic combustor using electrosprayed liquid hydrocarbons for mesoscale power generation , 2004 .

[13]  M. Mann,et al.  Electrospray Ionization for Mass Spectrometry of Large Biomolecules , 1990 .

[14]  K. Okuyama,et al.  Preparation of ZnS Nanoparticles by Electrospray Pyrolysis , 2000 .

[15]  R D Smith,et al.  Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. , 2001, Analytical chemistry.

[16]  A. Gomez,et al.  Co-Flow Laminar Diffusion Flames of Monodisperse Sprays: Structure, Evaporation and Microgravity Effects , 1996 .

[17]  C. Hendricks,et al.  Charged droplet experiments , 1962 .

[18]  R. D. Ramsier,et al.  Electrospun nanofibers for potential space-based applications , 2005 .

[19]  M. Reed,et al.  Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. , 2002, Biosensors & bioelectronics.

[20]  A. Gomez,et al.  On the structure of an electrostatic spray of monodisperse droplets , 1994 .

[21]  M. Elwenspoek,et al.  Silicon Micromachining , 1998 .

[22]  J. C. Almekinders,et al.  MULTIPLE JET ELECTROHYDRODYNAMIC SPRAYING AND APPLICATIONS , 1999 .

[23]  David Y. H. Pui,et al.  Experimental investigation of scaling laws for electrospraying: Dielectric constant effect , 1997 .

[24]  D. Kyritsis,et al.  Mesoscale power generation by a catalytic combustor using electrosprayed liquid hydrocarbons , 2002 .

[25]  W. Stark,et al.  Rapid synthesis of stable ZnO quantum dots , 2002 .

[26]  S. A. Roach,et al.  Aerosol Science , 1967 .

[27]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[28]  M. Cloupeau,et al.  Electrostatic spraying of liquids in cone-jet mode , 1989 .

[29]  Lutz Mädler,et al.  Controlled synthesis of nanostructured particles by flame spray pyrolysis , 2002 .

[30]  David Y. H. Pui,et al.  Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range , 1995 .

[31]  A. Gomez,et al.  Production of protein nanoparticles by electrospray drying , 1998 .

[32]  V. Bright,et al.  Ceramic MEMS new materials, innovative processing and future applications , 2001 .

[33]  Paulo Lozano,et al.  Electrospray emission from nonwetting flat dielectric surfaces. , 2004, Journal of colloid and interface science.