malignant melanoma by gene expression pro ®

* Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA 3 Department of Anatomy and Cell Biology, University of Iowa Cancer Center, Iowa City, Iowa 52242-1109, USA § National Cancer Institute, DCTDC, NIH, Bethesda, Maryland 20852, USA kChemical and Biological Systems Department, Agilent Laboratories, 3500 Deer Creek Road, Palo Alto, California 94304, USA ¶ Computer Science and Engineering Department, University of Washington, Seattle, Washington 98105, USA # Department of Electrical Engineering, Texas A & M University, College Station, Texas 77843, USA I National Cancer Institute, Surgery Branch, NIH, Bethesda, Maryland 20850, USA ** Queensland Institute of Medical Research, Herston, Queensland 4029, Australia 22 Neuro-Oncology Laboratory, Barrow Neurological Institute, Phoenix, Arizona 85013-4496, USA 33 Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, USA §§ Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA 2 These authors contributed equally to this work.

[1]  A. Shilkaitis,et al.  Beta1 integrin expression in malignant melanoma predicts occult lymph node metastases , 1995 .

[2]  M. Bittner,et al.  Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. , 1998, Cancer research.

[3]  W. Weyers,et al.  Classification of cutaneous malignant melanoma , 1999, Cancer.

[4]  G. Scott,et al.  pp125FAK in human melanocytes and melanoma: expression and phosphorylation. , 1995, Experimental cell research.

[5]  P. Meltzer,et al.  Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. , 1999, The American journal of pathology.

[6]  Y. Abe,et al.  Expression and phosphorylation of TOPK during spermatogenesis , 2005, Development, growth & differentiation.

[7]  Michael Bittner,et al.  Data analysis and integration: of steps and arrows , 1999, Nature Genetics.

[8]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[9]  L. Penland,et al.  Use of a cDNA microarray to analyse gene expression patterns in human cancer , 1996, Nature Genetics.

[10]  B. Everitt,et al.  Applied Multivariate Data Analysis. , 1993 .

[11]  D. Elder,et al.  Progression-related expression of beta3 integrin in melanomas and nevi. , 1999, Human pathology.

[12]  R. Folberg,et al.  Vasculogenic mimicry , 2004, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[13]  J Khan,et al.  DNA microarray technology: the anticipated impact on the study of human disease. , 1999, Biochimica et biophysica acta.

[14]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Zohar Yakhini,et al.  Clustering gene expression patterns , 1999, J. Comput. Biol..

[16]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[17]  Mary J. C. Hendrix,et al.  Role of intermediate filaments in migration, invasion and metastasis , 1996, Cancer and Metastasis Reviews.

[18]  D. Miller,et al.  Update on the incidence and mortality from melanoma in the United States. , 1999, Journal of the American Academy of Dermatology.

[19]  M. Hendrix,et al.  A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. , 1987, Cancer letters.

[20]  A. Raz,et al.  Autocrine motility factor and the extracellular matrix. I. Coordinate regulation of melanoma cell adhesion, spreading and migration involves focal contact reorganization , 1998, International journal of cancer.

[21]  H. Byers,et al.  Pathologic parameters in the diagnosis and prognosis of primary cutaneous melanoma. , 1998, Hematology/oncology clinics of North America.

[22]  J. Adams,et al.  Characterization of cell-matrix adhesion requirements for the formation of fascin microspikes. , 1997, Molecular biology of the cell.

[23]  S. Tumova,et al.  Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts. , 2000, Archives of biochemistry and biophysics.

[24]  B. Janji,et al.  Autocrine TGF‐β‐regulated expression of adhesion receptors and integrin‐linked kinase in HT‐144 melanoma cells correlates with their metastatic phenotype , 1999, International journal of cancer.

[25]  D. Bennett,et al.  Requirement for focal adhesion kinase in tumor cell adhesion , 1999, Oncogene.

[26]  M. Bittner,et al.  Expression profiling using cDNA microarrays , 1999, Nature Genetics.

[27]  Kenneth M. Yamada,et al.  Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. , 1998, Science.

[28]  Christian A. Rees,et al.  Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Hofmann-Wellenhof,et al.  Interrelation of motility, cytoskeletal organization and gap junctional communication with invasiveness of melanocytic cells in vitro. , 1997, Invasion & metastasis.

[30]  V. Sondak,et al.  Recent Advances in Melanoma Staging and Therapy , 1999, Annals of Surgical Oncology.

[31]  M. Berens,et al.  The role of extracellular matrix in human astrocytoma migration and proliferation studied in a microliter scale assay , 1994, Clinical & Experimental Metastasis.

[32]  M. Berens,et al.  Contrasting migratory response of astrocytoma cells to tenascin mediated by different integrins. , 1996, Journal of cell science.