A study of LOCC-detection of a maximally entangled state using hypothesis testing

We study how well we can answer the question 'Is the given quantum state equal to a certain maximally entangled state?' using LOCC, in the context of hypothesis testing. Under several locality and invariance conditions, optimal tests will be derived for several special cases by using basic theory of group representations. Some optimal tests are realized by performing quantum teleportation and checking whether the state is teleported. We will also give a finite process for realizing some optimal tests. The performance of the tests will be numerically compared.

[1]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[2]  Masahito Hayashi,et al.  Local copying and local discrimination as a study for nonlocality of a set of states , 2006 .

[3]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[4]  F. Schlemmer,et al.  English Summary , 1972 .

[5]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[6]  Masahito Hayashi Quantum information , 2006 .

[7]  M. Lewenstein,et al.  Detection of entanglement with few local measurements , 2002, quant-ph/0205089.

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  C. Macchiavello,et al.  Local observables for entanglement detection of depolarized states , 2003 .

[10]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[11]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[12]  林 正人 Quantum information : an introduction , 2006 .

[13]  C. Helstrom Quantum detection and estimation theory , 1969 .

[14]  M. Hayashi Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing , 2002, quant-ph/0208020.

[15]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[16]  S. Virmani,et al.  Construction of extremal local positive-operator-valued measures under symmetry , 2002, quant-ph/0212020.

[17]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[18]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[19]  E. Rains RIGOROUS TREATMENT OF DISTILLABLE ENTANGLEMENT , 1998, quant-ph/9809078.

[20]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[21]  M. Barbieri,et al.  Detection of entanglement with polarized photons: experimental realization of an entanglement witness. , 2003, Physical review letters.

[22]  L. Brown,et al.  An unbiased test for the bioequivalence problem , 1997 .

[23]  M. Murao,et al.  Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. , 2005, Physical review letters.

[24]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[25]  Masahito Hayashi Asymptotic theory of quantum statistical inference : selected papers , 2005 .

[26]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[27]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.