Weak convergence of multivariate fractional processes

Weak convergence to a form of fractional Brownian motion is established for a wide class of nonstationary fractionally integrated multivariate processes. Instrumental for the main argument is a result of some independent interest on approximations for partial sums of stationary linear vector sequences. A functional central limit theorem for smoothed processes is established under more general assumptions.

[1]  Distant long-range dependent sums and regression estimation , 1995 .

[2]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[3]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[4]  C. C. Heyde,et al.  On defining long-range dependence , 1997, Journal of Applied Probability.

[5]  Domenico Marinucci,et al.  Semiparametric frequency domain analysis of fractional cointegration , 1998 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  Victor Solo,et al.  Asymptotics for Linear Processes , 1992 .

[8]  Piotr Kokoszka,et al.  The integrated periodogram for long-memory processes with finite or infinite variance , 1997 .

[9]  N. Herrndorf A Functional Central Limit Theorem for Weakly Dependent Sequences of Random Variables , 1984 .

[10]  Tuan Pham,et al.  Some mixing properties of time series models , 1985 .

[11]  P. Robinson Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .

[12]  Inference for Unstable Long-Memory Processes with Applications to Fractional Unit Root Autoregressions , 1995 .

[13]  M. Taqqu,et al.  Parameter estimation for infinite variance fractional ARIMA , 1996 .

[14]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[15]  M. Taqqu Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.

[16]  Yu. A. Davydov,et al.  The Invariance Principle for Stationary Processes , 1970 .

[17]  Domenico Marinucci,et al.  Alternative forms of fractional Brownian motion , 1998 .

[18]  Piotr Kokoszka,et al.  Fractional ARIMA with stable innovations , 1995 .

[19]  Estimation of the dependence parameter in linear regression with long-range-dependent errors , 1997 .

[20]  V V. Gorodetskii,et al.  On Convergence to Semi-Stable Gaussian Processes , 1978 .

[21]  U. Einmahl,et al.  Extensions of results of Komlo´s, Major, and Tusna´dy to the multivariate case , 1989 .