Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials

Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.

[1]  Uday K Chettiar,et al.  Negative index metamaterial combining magnetic resonators with metal films. , 2006, Optics express.

[2]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[3]  Julien Jaeck,et al.  Total routing and absorption of photons in dual color plasmonic antennas , 2011 .

[4]  J. Schott Fundamentals of Polarimetric Remote Sensing , 2009 .

[5]  R. A. Wood,et al.  High-performance infrared thermal imaging with monolithic silicon focal planes operating at room temperature , 1993, Proceedings of IEEE International Electron Devices Meeting.

[6]  Paul W. Kruse,et al.  Uncooled Thermal Imaging Arrays, Systems, and Applications , 2001 .

[7]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[8]  Masafumi Kimata,et al.  Wavelength selective uncooled infrared sensor by plasmonics , 2012 .

[9]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[10]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[11]  Gamani Karunasiri,et al.  Investigation of microelectromechanical systems bimaterial sensors with metamaterial absorbers for terahertz imaging , 2014 .

[12]  Shinpei Ogawa,et al.  Spontaneous emission control by 17 layers of three-dimensional photonic crystals , 2008 .

[13]  S. Kawata Plasmonics: Future Outlook , 2012 .

[14]  Xiaodong Yang,et al.  Structural color printing based on plasmonic metasurfaces of perfect light absorption , 2015, Scientific Reports.

[15]  Michael Vollmer,et al.  Infrared Thermal Imaging: Fundamentals, Research and Applications , 2010 .

[16]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[17]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[18]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[19]  Jean-Luc Pelouard,et al.  Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. , 2012, Optics letters.

[20]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[21]  Yanxia Cui,et al.  A thin film broadband absorber based on multi-sized nanoantennas , 2011 .

[22]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[23]  Hirohito Yamada,et al.  Photonic crystals for the application to spectrometers and wavelength filters , 2013, IEICE Electron. Express.

[24]  Jean-Luc Pelouard,et al.  Analytical description of subwavelength plasmonic MIM resonators and of their combination. , 2013, Optics express.

[25]  Andrea Alù,et al.  Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing , 2016, Nature Communications.

[26]  Charles M. Hanson,et al.  Uncooled thermal imaging at Texas Instruments , 1992, Optics & Photonics.

[27]  Masafumi Kimata,et al.  Bandwidth control of wavelength-selective uncooled infrared sensors using two-dimensional plasmonic absorbers , 2016, SPIE Defense + Security.

[28]  Kai Chen,et al.  Hole Array Perfect Absorbers for Spectrally Selective Midwavelength Infrared Pyroelectric Detectors , 2016 .

[29]  Masafumi Kimata,et al.  Performance of 320 x 240 uncooled IRFPA with SOI diode detectors , 2000, SPIE Optics + Photonics.

[30]  George D. Skidmore Uncooled 10μm FPA development at DRS , 2016, SPIE Defense + Security.

[31]  Makoto Okada,et al.  Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities , 2008 .

[32]  J. Zhao High sensitivity photomechanical MW-LWIR imaging using an uncooled MEMS microcantilever array and optical readout (Invited Paper) , 2005, SPIE Defense + Commercial Sensing.

[33]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[34]  Masafumi Kimata,et al.  Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber , 2014 .

[35]  Junichi Takahara,et al.  Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas. , 2016, Nano letters.

[36]  Jonathan M Cooper,et al.  Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. , 2016, ACS nano.

[37]  Norihiro Umeda,et al.  Ultrasmall radial polarizer array based on patterned plasmonic nanoslits , 2012 .

[38]  S. Noda,et al.  Effects of structural fluctuations on three-dimensional photonic crystals operating at near-infrared wavelengths , 2002 .

[39]  A. G. Paulish,et al.  Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers , 2016, Scientific Reports.

[40]  Atsushi Sakurai,et al.  Perfect infrared absorber and emitter based on a large-area metasurface , 2017 .

[41]  Thomas S. Villani,et al.  Progress toward an uncooled IR imager with 5-mK NETD , 1998, Optics & Photonics.

[42]  Masafumi Kimata,et al.  Multi-color imaging with silicon-on-insulator diode uncooled infrared focal plane array using through-hole plasmonic metamaterial absorbers , 2015, 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS).

[43]  Masafumi Kimata,et al.  Theoretical investigation of all-metal-based mushroom plasmonic metamaterial absorbers at infrared wavelengths , 2015 .

[44]  Masafumi Kimata,et al.  Fano resonance in asymmetric-period two-dimensional plasmonic absorbers for dual-band uncooled infrared sensors , 2016 .

[45]  Tayfun Akin,et al.  The first fabricated dual-band uncooled infrared microbolometer detector with a tunable micro-mirror structure , 2012, Defense + Commercial Sensing.

[46]  K. Liddiard Thin-film resistance bolometer IR detectors—II , 1984 .

[47]  A. Ishikawa,et al.  Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers , 2015, Scientific Reports.

[48]  Munetaka Ueno,et al.  Two-million-pixel SOI diode uncooled IRFPA with 15μm pixel pitch , 2012, Defense + Commercial Sensing.

[49]  Masaki Hirota,et al.  Thermoelectric infrared imager and automotive applications , 2001, SPIE Defense + Commercial Sensing.

[50]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[51]  A. Polman,et al.  Plasmonic metamaterials , 2009, 2009 IEEE LEOS Annual Meeting Conference Proceedings.

[52]  Masafumi Kimata,et al.  Absorption Properties of Simply Fabricated All-Metal Mushroom Plasmonic Metamaterials Incorporating Tube-Shaped Posts for Multi-Color Uncooled Infrared Image Sensor Applications , 2016 .

[53]  Yia-Chung Chang,et al.  Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. , 2012, Optics express.

[54]  Masafumi Kimata,et al.  Three-dimensional plasmonic metamaterial absorbers based on all-metal structures , 2015, Defense + Security Symposium.

[55]  J. Talghader,et al.  Coupled absorption filters for thermal detectors. , 2006, Optics letters.

[56]  C. Ho,et al.  Polarization controllable multispectral symmetry-breaking absorber in mid-infrared , 2016, 2016 International Conference on Optical MEMS and Nanophotonics (OMN).

[57]  Masafumi Kimata,et al.  Detection Wavelength Control of Uncooled Infrared Sensors Using Two-Dimensional Lattice Plasmonic Absorbers , 2015, Sensors.

[58]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[59]  Masafumi Kimata,et al.  Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber , 2013 .

[60]  D. Horsley,et al.  Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber , 2014 .

[61]  Dean P. Neikirk,et al.  Design of infrared wavelength-selective microbolometers using planar multimode detectors , 2004 .

[62]  Thomas Maier,et al.  Multispectral microbolometers for the midinfrared. , 2010, Optics letters.

[63]  Masafumi Kimata,et al.  Mushroom plasmonic metamaterial infrared absorbers , 2015 .

[64]  Yanxia Cui,et al.  Plasmonic and metamaterial structures as electromagnetic absorbers , 2014, 1404.5695.

[65]  Shinpei Ogawa,et al.  Control of Light Emission by 3D Photonic Crystals , 2004, Science.

[66]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[67]  Analysis of thermal stress in wafer bonding of dissimilar materials for the introduction of an InP-based light emitter into a GaAs-based three-dimensional photonic crystal , 2003 .

[68]  Xiangang Luo,et al.  Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. , 2010, Nature communications.

[69]  Kazuhiko Matsumoto,et al.  Graphene on plasmonic metamaterials for infrared detection , 2016, SPIE Defense + Security.

[70]  Susumu Noda,et al.  Realization of narrowband thermal emission with optical nanostructures , 2015 .

[71]  Ross Stanley,et al.  Plasmonics in the mid-infrared , 2012, Nature Photonics.

[72]  Lei Zhou,et al.  Ultra-broadband terahertz metamaterial absorber , 2014 .

[73]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[74]  Christophe Dupuis,et al.  Total funneling of light in high aspect ratio plasmonic nanoresonators , 2011 .

[75]  Young Joon Yoo,et al.  Metamaterials for Perfect Absorption , 2016 .

[76]  Masafumi Kimata Trends in small-format infrared array sensors , 2013, 2013 IEEE SENSORS.

[77]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[78]  Masafumi Kimata,et al.  Direct fabrication and characterization of high-aspect-ratio plasmonic nanogratings using tapered-sidewall molds , 2017 .

[79]  Masafumi Kimata,et al.  Polarization-selective uncooled infrared sensor using a one-dimensional plasmonic grating absorber , 2015, Defense + Security Symposium.

[80]  Yu-Bin Chen,et al.  Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons. , 2013, Optics express.

[81]  Gennady Shvets,et al.  Design of metamaterial surfaces with broadband absorbance. , 2011, Optics letters.

[82]  Howard R. Beratan,et al.  Uncooled monolithic ferroelectric IRFPA technology , 1998, Optics & Photonics.

[83]  Ji Zhou,et al.  An extremely broad band metamaterial absorber based on destructive interference. , 2011, Optics express.

[84]  Anthony Lefebvre,et al.  CMOS compatible metal-insulator-metal plasmonic perfect absorbers , 2016 .

[85]  Jean-Luc Pelouard,et al.  Free-standing subwavelength metallic gratings for snapshot multispectral imaging , 2010 .

[86]  Sailing He,et al.  Ultra-broadband microwave metamaterial absorber , 2011, 1201.0062.

[87]  Chengkuo Lee,et al.  Micro-electro-mechanically switchable near infrared complementary metamaterial absorber , 2014 .

[88]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[89]  S. John,et al.  The Localization of Light , 1991 .

[90]  Makoto Okada,et al.  Thermal emission of two-color polarized infrared waves from integrated plasmon cavities , 2008 .

[91]  John R. Tower,et al.  Uncooled IR imager with 5-mK NEDT , 1997, Defense, Security, and Sensing.