Handling Uncertainty in Controllers Using Type-2 Fuzzy Logic

In this paper, we show the advantages of using type-2 fuzzy logic in the design of controllers for real-world applications because of their inherent uncertainty. We support this statement with experimental results, qualitative observations, and quantitative measures of errors. For quantifying the errors, we utilized three widely accepted performance criteria, namely: Integral of Square Error (ISE), Integral of the Absolute value of the Error (IAE), and Integral of the Time multiplied by the Absolute value of the Error (ITAE).

[1]  Gurvinder S. Virk Digital Computer Control Systems , 1991 .

[2]  O. Nelles Nonlinear System Identification , 2001 .

[3]  Oscar Castillo,et al.  Intelligent control of non-linear dynamic plants using type-2 fuzzy logic and neural networks , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[4]  Jonathan M. Garibaldi,et al.  Investigating Adaptation in Type-2 Fuzzy Logic Systems Applied to Umbilical Acid-Base Assessment , 2003 .

[5]  Frank L. Severance System Modeling and Simulation: An Introduction , 2001 .

[6]  A. T. Fuller,et al.  The Early Development of Control Theory , 1976 .

[7]  E. H. Mamdani,et al.  Twenty years of fuzzy control: experiences gained and lessons learnt , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[8]  Oscar Castillo,et al.  A new method for adaptive model-based control of non-linear plants using type-2 fuzzy logic and neural networks , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[9]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[10]  Jonas Sjöberg Nonlinear Black-Box Structures -- Some Approaches and Some Examples , 1996 .

[11]  P. B. Deshpande,et al.  Computer Process Control With Advanced Control Applications , 1988 .

[12]  Vijay K. Madisetti,et al.  The Digital Signal Processing Handbook , 1997 .

[13]  Jerry M. Mendel,et al.  Uncertainty, fuzzy logic, and signal processing , 2000, Signal Process..

[14]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[15]  Gail D. Baura,et al.  Nonlinear System Identification , 2002 .

[16]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[17]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[18]  John Van De Vegte,et al.  Feedback control systems , 1986 .

[19]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[20]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[21]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .